The therapeutic benefits of natural cannabinoids in delaying the pathophysiology of Alzheimer's disease

Authors

DOI:

https://doi.org/10.33448/rsd-v10i6.15418

Keywords:

Alzheimer's disease; Pathophysiology; Neurology; Natural cannabidiodes.

Abstract

Objectives: To analyze and evaluate the current conjuncture inherent to the therapeutic use of natural cannabinoids in delay and protection against the pathophysiological actions caused by Alzheimer's disease. Methods: Overview of systematic reviews. The search and selection of the studies were predominantly in the databases of the Medical Literature Analysis and Retrieval System Online (Medline), National Library of Medicine (Pubmed) and Scientific Electronic Library Online (SciELO) in  the period between March and August  2020.  Key findings: Current results showed promising therapeutic effects of natural cannabinoids in the treatment of Alzheimer's disease, such as reduction of motor and cognitive symptoms, and protective neuroprotective action. These results can be explained, in part, by the anti-inflammatory, antioxidant, antagonist action of CB1 receptors, as well as by the activation of PPAR-gamma receptors produced by these substances. Conclusions: The systematic research presented in this overview converges in the sense that the therapeutic applications provided by natural cannabinoids and their analogues may play a unique role in the modulation of molecular targets involved in central nervous system dysfunctions caused by Alzheimer's disease, thus enabling the development of innovative drugs, safer and more effective in the treatment of patients not responsive to conventional clinical practice, with significant improvement in quality of life.   

References

Agüera, O. L., & López, A. J. (2017). Mild behavioral impairment: a new concept for the prodromic phases of dementia. Rev Esp Geriatr Geronto; 52 (Suppl. 1): 24-27. 10.1016/S0211-139X(18)30076-3.

Amandine, E. B., & Yannick, M. (2015). Potential Therapeutical Contributions of the Endocannabinoid System towards Aging and Alzheimer’s Disease. Aging Dis; 6(5): 400-405. 10.14336 / AD.2015.0617.

Aprahamian, I., et al. (2009). Alzheimer’s Disease: An Epidemiology and Diagnosis Review. Rev Bras Clin Med; 7(1): 27-35.

Aso, E. &, Ferrer, I. Cannabinoids for treatment of Alzheimer's disease: moving toward the clinic. Front Pharmacol. 2014; 37(5): 1-11. 10.3389/fphar.2014.00037.

Attems, J.. et al. (2017). Alzheimer's disease pathology in synucleinopathies. Lancet Neurol; 16(1): 22-23. https://doi.org/10.1016/S1474-4422(16)30282-4.

Banerjee, S. (2012). The Macroeconomics of dementia-will the world economy get Alzhimer´s disease? Arch Med Res; 43(8): 705-709. 10.1016/j.arcmed.2012.10.006.

Blesa, R., et al. (2018). Strategies for Continued Successful Treatment in Patients with Alzheimer's Disease: An Overview of Switching Between Pharmacological Agents. Curr Alzheimer Res; 15(10): 964-974. 10.2174/1567205015666180613112040.

Boggs, D. L., et al. (2018). Ranganathan M. Clinical and Preclinical Evidence for Functional Interactions of Cannabidiol and Δ9 Tetrahydrocannabinol. Neuropsychopharmacology. 2018;43(1):142-154. 10.1038 / npp.2017.209. 10.1038/npp.2017.209.

Bondi, M. W., et al. (2017) Alzheimer’s Disease: Past, Present, and Future. J Int Neuropsychol Soc; 23 (9-10): 818–831. https://doi.org/10.1017/S135561771700100X.

Burnstock, G. (2009). Autonomic neurotransmission: 60 years since sir Henry Dale. Annu Rev Pharmacol Toxicol; 49(1):1-30. 10.1146/annurev.pharmtox.052808.102215.

Cavalcante, D. A. L., & Fernandes, L. T. (2019). The rational use of phytotherapy: demystifying common sense. Braz J Pharm; 100(1): 3295-3313 [in Portuguese].

Cheng, D., Low, J. K., Logge, W., Garner, B., & Karl, T. (2014). Chronic cannabidiol treatment improves social and object recognition in double transgenic APPswe/PS1∆E9 mice. Psychopharmacology.; 231(15):3009-3017. 10.1007/s00213-014-3478-5.

Crippa, J. A.. et al. (2018). Translational Investigation of the Therapeutic Potential of Cannabidiol (CBD): Toward a New Age. Front. Immunol.; 9(1): 1-16. 10.3233 / JAD-160882.

De Falco, A., et al. (2016). Alzheimer´s disease: Etiological hypotheses and treatment perspectives. Quím. Nova; 39(1): 63-80. https://doi.org/10.5935/0100-4042.20150152 .

Devane, W. A., et al. (1992). Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 1992; 258(5090): 1946-1949. 10.1126/science.1470919.

Dinh, T. P., et al. (2002). Brain monoglyceride lipase participating in endocannabinoid inactivation. Proc Natl Acad Sci; 99(16): 10819-10824. 10.1073/pnas.152334899.

Dong, H., et al. (2016). Label-Free Electrochemical Biosensor for Monitoring of Chloride Ion in an Animal Model of Alzhemier’s Disease. ACS Chem Neurosci; 8(2): 339-346. https://doi.org/10.1021/acschemneuro.6b00296.

Fan L. et al. (2020). New Insights Into the Pathogenesis of Alzheimer's Disease. Front Neurol ; 10 (article 1312): 1-12.

Ferreira-Vieira, T. H., et al. (2016). Alzheimer's Disease: Targeting the Cholinergic System. Curr Neuropharmacol.; 14 (1): 101-115. 10.2174/1570159X13666150716165726.

Freeman, A. M., et al. (2019). How does cannabidiol (CBD) influence the acute effects of delta-9-tetrahydrocannabinol (THC) in humans? A systematic review. Neurosci Biobehav Rev.; 107(1): 696-712. 10.1016/j.neubiorev.2019.09.036.

Gallardo, G., & Holtzman, D. M. (2019). Amyloid-β and Tau at the Crossroads of Alzheimer's Disease.Adv Exp Med Biol; 1184(1): 187-203. 10.1007/978-981-32-9358-8_16.

Glaser, S. T.. et al. (2003). Evidence against the presence of an anandamide transporter. ProcNatl Acad Sci; 100(7): 4269-4274. 10.1073/pnas.0730816100.

Gomazkov, O. A. (2013). Signaling molecule as regulators of neurogenesis in the adult brain. Neurochem J.; 7(1): 241-255. https://doi.org/10.1134/S1819712413040041.

Greydanus, D., & Holt, M. (2014). Cannabis: a controversial drug from 21 st century antiquity. Georgian Med News; 230(1): 24-30.

Grote, H. E., & Hannan, A. J. (2007). Regulators of adult neurogenesis in the healthy and diseased brain. Clin Exp Pharm Phys.; 34(1): 533-545. 10.1111/j.1440-1681.2007.04610.x.

Honório, K. M., et al. Aspectos terapêuticos de compostos da planta Cannabis sativa.Quím. Nova; 29(2): 318-325. https://doi.org/10.1590/S0100-40422006000200024.

Hane, F. T., et al. (2017). Recent Progress in Alzheimer's Disease Research, Part 3: Diagnosis and Treatment. J Alzheimers Dis; 57(3): 645-665. 10.3233 / JAD-160882.

Huestis, M. A., Solimini, R., Pichini, S., Pacifici, R., Carlier, J, & Busardò, F. P. Cannabidiol Adverse Effects and Toxicity. Curr Neuropharmacol.; 17(10): 974-989. 10.2174/1570159X17666190603171901.

Kalant, H. (2001). Medicinal use of cannabis: history and currentstatus. Pain Res Manag; 6 (2): 80-91. 10.1155/2001/469629.

Kantarci, K., et al. (2020). β-Amyloid PET and neuropathology in dementia with Lewy bodies. Neurology; 94(3): e282-e291.

Krebs, M. O., et al. (2020) Cannabis et neurodéveloppement. Bull Acad Natl Med. 2020; 204(6): 561-569. 10.1016/j.banm.2020.04.002.

Liesi, E. H., et al. (2013). Alzheimer disease in the United States (2010–2050) estimated using the 2010 census. Neurology; 80 (19): 1778-1783. 10.1212/WNL.0b013e31828726f5.

Libro, R., Diomede, F., Scionti, D., et al., Cannabidiol Modulates the Expressionof Alzheimer’s Disease-Related Genes in Mesenchymal Stem Cells. Int J Mol Sci. 2017; 18(1):26. 10.3390/ijms18010026.

Mannucci, C., et al. (2017). Neurological Aspects of Medical Use of Cannabidiol. CNS Neurol Disord Drug Targets .; 16 (5): 541-553.

Maresova, P., et al. (2015). Socio-economic Aspects of Alzheimer's Disease. Curr Alzheimer Res; 12(9): 903-911. 10.2174/156720501209151019111448.

McDonough, I. M. (2017). Beta-amyloid and Cortical Thickness Reveal Racial Disparities in Preclinical Alzheimer's Disease. Neuroimage Clin 2017; 16(2017): 659-667.

Oliveira, B. C. L., et al. (2018). Inflammation as a Possible Link Between Dyslipidemia and Alzheimer's Disease. Neuroscience; 376(1):127-141. 10.1016/j.neuroscience.2018.02.012.

Piomelli, D. (2003). The molecular logic of endocannabinoid signalling. Nat Rev Neurosci.; 4(11): 873-84. DOI: 10.1038/nrn1247.

Ross, R. A. (2007). Allosterism and cannabinoid CB(1) receptors: the shape of things to come. Trends Pharmacol Sci; 28(11): 567-72. 10.1016/j.tips.2007.10.006.

Ritchie, K., & Lovestone S. The dementias. (2002). Lancet; 360(1): 1759-1766. 10.1016/S0140-6736(02)11667-9.

Robinson, M., et al. (2017). Recent Progress in Alzheimer’s Disease Research, Part 2: Genetics and Epidemiology. J Alzheimers Dis 2017; 57 (2017) 317–330. 10.3233/JAD-161149

Sadock, B. J., & Sadock, V. A. (2009) eds. Kaplan & Sadock´s comprehensive text book of psychiatry, (9th ed.): Lippincott Williams & wilkins.

Stuart, P. A. (2017). Alzheimer's disease: a special collection. Stem Cells Transl Med; 6 (11): 1951-1955. 10.1002/sctm.12217.

Watt, G., & Karl T. (2017). In vivo Evidence for Therapeutic Properties of Cannabidiol (CBD) for Alzheimer’s Disease. Front Pharmacol; 8(20):1- 7. 10.3389/ fphar.2017.00020.

Weller, J., & Budson, A. (2018). Current understanding of Alzheimer's disease diagnosis and treatment.Neuropharmacol; 2018(7): 1-9. 10.12688/f1000research.14506.1.

Xie, Z., et al. (2020). Magnolol alleviates Alzheimer's disease-like pathology in transgenic C. elegans by promoting microglia phagocytosis and the degradation of beta-amyloid through activation of PPAR-γ. Pharmacother Biomed 2020; 124(2020): 1-12.

Downloads

Published

18/05/2021

How to Cite

CAVALCANTE, D. A. L. .; FERNANDES, L. T. . The therapeutic benefits of natural cannabinoids in delaying the pathophysiology of Alzheimer’s disease. Research, Society and Development, [S. l.], v. 10, n. 6, p. e0310615418, 2021. DOI: 10.33448/rsd-v10i6.15418. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/15418. Acesso em: 18 sep. 2024.

Issue

Section

Health Sciences