Adjustment of a time series model to predict rainfall
DOI:
https://doi.org/10.33448/rsd-v10i6.15643Keywords:
Meteorological; Forecasts; Seasonality; Model SARIMA.Abstract
Precipitation is one of the most relevant meteorological variables for climate studies. Knowing its spatial and temporal variability allows planning various human activities, both from an economic and social point of view. Such importance is due to the consequences that it can cause, in excess or in lack, causing floods, floods, droughts, decrease in energy supply, low food production, among others. This study aimed to study the historical series of average monthly rainfall in the city of Lavras/MG in order to obtain a statistical model that allows predictions to be made. For this purpose, 228 observations were used corresponding to the period from January 2000 to December 2018 for this analysis, the existence of the trend and seasonality components was verified. The Box and Jenkins methodology was used to model the data. Some models were adjusted using the SARIMA class, as the series under study showed stochastic seasonality. The comparison between the models considered suitable for the series was performed using the NDE and AIC. The SARIMA (0,0,0) x (0,1,1)12 model was used to make predictions of future observations. The series of monthly average rainfall in the city of Lavras/MG presented a seasonal component with a periodicity of 12 months. The adjusted model obtained a very good result, since the 95% confidence intervals contained the twelve real values of average monthly rainfall in the city of Lavras/MG for the year 2019, even in the face of unforeseen and uncertainties associated with climatic factors. The model in question can be used in decision making to carry out future strategic plans that involve public issues associated with the city of Lavras. These forecasts can also be used to assist the managers of the Funil/MG hydroelectric plant to schedule future water flow operations and maintenance properly, as it is close to the municipality of Lavras.
References
Almeida, E. M., Oliveira, A. C. S., Sanches, L., & Pascoa, M. A. R. (2020). Comportamento e previsão do nível do rio Cuiabá por meio de modelos SETAR. Sigmae, 9(2), 1-13.
Akaike, H. (1973). Maximum likelihood identification of gaussian autoregressive moving average models. Biometrika, 21, 243-247.
Araújo, L. E., Silva, D. F., Neto, J. M. M., & Souza, F. A. S. (2007). Análise da variabilidade espaço-temporal da precipitação na bacia do Rio Paraíba usando IAC. Revista de Geografia, 22(2), 23-26.
Barbosa, E. C., Sáfadi, T., Nascimento, M., Nascimento, A. C. C., Silva, C. H. O., & Manuli, R. C. (2015). Metodologia Box & Jenkins para previsão de temperatura média mensal da cidade de Bauru (SP). Revista Brasileira de Biometria, 33(1), 104-117.
Batista, A. L. F. (2009). Modelos de séries temporais e redes neurais artificiais na previsão de vazão. Dissertação de mestrado, Universidade Federal de Lavras, Lavras, MG, Brasil.
Box, G. E. P., Jenkins, G. M., Reinsel, G., & Ljung, G. M. (2015). Time Series Analysis: Forecasting and Control (4a ed.). San Francisco: Wiley.
Cintra, R. A., Melo, M. I. P., & Bueno Filho, J. S. S. (2019). Modelos de séries temporais para a previsão da temperatura média mensal de Lavras, MG. Sigmae, 8(2), 596-605.
Ferreira, R. A., Miranda, V. F. L., Santos, P. M., & Sáfadi, T. (2020). Um estudo sobre a evolução de óbitos por câncer de mama no Brasil usando modelos de séries temporais. Research, Society and Development, 9(12), 1-20.
Hannan, E. J., & Quinn, B. G. (1979). The determination of the order of autoregression. Journal of the Royal Statistical Society: Series B (Methodological), 41(2), 190-195.
Instituto Nacional de Meteorologia. (2020). Recuperado em 15 de outubro de 2020, de https://portal.inmet.gov.br/dadoshistoricos#.
Ljung, G. M., & Box, G. E. P. (1978). On a measure of lack of _t in time series models. Biometrika, 65(2), 97-303.
Mello, Y. R., & Oliveira, T. M. N. (2016). Análise estatística e geoestatística da precipitação média para o município de Joinville/SC. Revista Brasileira de Meteorologia, 31(2), 229-239.
Miranda, T. P. (2016). Previsão da precipitação mensal do município de Ouro Branco - MG, por meio de modelos de séries temporais. Dissertação de mestrado, Universidade Federal de São João Del Rei, São João Del Rei, MG, Brasil.
Moraes, B. C., Costa, J. M. N., Costa, A. C. L., & Costa, M. H. (2005). Variação espacial e temporal da precipitação no estado do Pará. Acta Amazônica, 35(2), 207-214.
Morettin, P. A., & Toloi, C. M. C. (2006). Análise de Séries Temporais (2a ed.). São Paulo: E. Blucher.
Paiva, D. A., Herval, A. C. F., & Sáfadi, T. (2019). Metodologia de Séries Temporais como ferramenta de análise na produção de frangos no Brasil. Sigmae, 8(2), 227-237.
Passos, M. L. V., Raposo, A. B., & Mendes, T. J. (2017). Precipitação pluviométrica mensal e anual provável para o município de São Mateus /ES. Agropecuária Científica no Semiárido, 13(2), 162-168.
Pereira, A. R., Costa, A. S., Oliveira, V. G., Borges, P. F., & Filho, A. I. (2015). Análise do comportamento das médias anuais da precipitação pluvial e temperatura da cidade de Areia, Paraíba. Gaia Scientia, 9(1), 67-73.
R Development Core Team. (2021). R: a language and environment for statistical computing. Vienna: R Foundation for statistical computing. http://www.Rproject.org.
Santos, F. A., & Aquino, C. M. S. (2017). Análise da precipitação pluviométrica no município de Castelo do Piauí, Nordeste do Brasil. Geousp, 21(2), 619-633.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Pedro Henrique Alves Bittencourt Santos; Otávio Augusto dos Santos Delfino; Ricardo Vitor Ribeiro dos Santos; Mateus do Nascimento
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.