Adjustment of a time series model to predict rainfall

Authors

DOI:

https://doi.org/10.33448/rsd-v10i6.15643

Keywords:

Meteorological; Forecasts; Seasonality; Model SARIMA.

Abstract

Precipitation is one of the most relevant meteorological variables for climate studies. Knowing its spatial and temporal variability allows planning various human activities, both from an economic and social point of view. Such importance is due to the consequences that it can cause, in excess or in lack, causing floods, floods, droughts, decrease in energy supply, low food production, among others. This study aimed to study the historical series of average monthly rainfall in the city of Lavras/MG in order to obtain a statistical model that allows predictions to be made. For this purpose, 228 observations were used corresponding to the period from January 2000 to December 2018 for this analysis, the existence of the trend and seasonality components was verified. The Box and Jenkins methodology was used to model the data. Some models were adjusted using the SARIMA class, as the series under study showed stochastic seasonality. The comparison between the models considered suitable for the series was performed using the NDE and AIC. The SARIMA (0,0,0) x (0,1,1)12 model was used to make predictions of future observations. The series of monthly average rainfall in the city of Lavras/MG presented a seasonal component with a periodicity of 12 months. The adjusted model obtained a very good result, since the 95% confidence intervals contained the twelve real values ​​of average monthly rainfall in the city of Lavras/MG for the year 2019, even in the face of unforeseen and uncertainties associated with climatic factors. The model in question can be used in decision making to carry out future strategic plans that involve public issues associated with the city of Lavras. These forecasts can also be used to assist the managers of the Funil/MG hydroelectric plant to schedule future water flow operations and maintenance properly, as it is close to the municipality of Lavras.

Author Biographies

Pedro Henrique Alves Bittencourt Santos, Centro Federal de Educação Tecnológica de Minas Gerais

Majoring in Electrical Engineering course, Bachelor from the Federal Center of Technological Education of Minas Gerais / Campus IX.

Otávio Augusto dos Santos Delfino, Centro Federal de Educação Tecnológica de Minas Gerais

Electrotechnical technician and graduating in Electrical Engineering, seeking new knowledge and experience in the area!

Ricardo Vitor Ribeiro dos Santos, Centro Federal de Educação Tecnológica de Minas Gerais

Graduated in mathematics from Fundação Educacional de Lavras, doctor and master in statistics and agricultural experimentation from Universidade Federal de Lavras. In research, he works mainly with population dynamics and computer simulation. He is currently a professor at CEFET - MG Campus Nepomuceno and is part of the general training department.

Mateus do Nascimento, Centro Federal de Educação Tecnológica de Mians Gerais

Master in Mathematics from the Federal University of São João del Rei (2013). Specialist in Distance Education at Centro Universitário do Sul de Minas (2008). Specialist in Mathematics from the Federal University of São João del Rei (2010). Graduation in Mathematics at Centro Universitário do Sul de Minas (2005). Professor at the Federal Institute of Minas Gerais in the city of Sabará (Current). I act as an Advisor Professor for the medalist students of the Brazilian Mathematics Olympiad of Public Schools - OBMEP.

References

Almeida, E. M., Oliveira, A. C. S., Sanches, L., & Pascoa, M. A. R. (2020). Comportamento e previsão do nível do rio Cuiabá por meio de modelos SETAR. Sigmae, 9(2), 1-13.

Akaike, H. (1973). Maximum likelihood identification of gaussian autoregressive moving average models. Biometrika, 21, 243-247.

Araújo, L. E., Silva, D. F., Neto, J. M. M., & Souza, F. A. S. (2007). Análise da variabilidade espaço-temporal da precipitação na bacia do Rio Paraíba usando IAC. Revista de Geografia, 22(2), 23-26.

Barbosa, E. C., Sáfadi, T., Nascimento, M., Nascimento, A. C. C., Silva, C. H. O., & Manuli, R. C. (2015). Metodologia Box & Jenkins para previsão de temperatura média mensal da cidade de Bauru (SP). Revista Brasileira de Biometria, 33(1), 104-117.

Batista, A. L. F. (2009). Modelos de séries temporais e redes neurais artificiais na previsão de vazão. Dissertação de mestrado, Universidade Federal de Lavras, Lavras, MG, Brasil.

Box, G. E. P., Jenkins, G. M., Reinsel, G., & Ljung, G. M. (2015). Time Series Analysis: Forecasting and Control (4a ed.). San Francisco: Wiley.

Cintra, R. A., Melo, M. I. P., & Bueno Filho, J. S. S. (2019). Modelos de séries temporais para a previsão da temperatura média mensal de Lavras, MG. Sigmae, 8(2), 596-605.

Ferreira, R. A., Miranda, V. F. L., Santos, P. M., & Sáfadi, T. (2020). Um estudo sobre a evolução de óbitos por câncer de mama no Brasil usando modelos de séries temporais. Research, Society and Development, 9(12), 1-20.

Hannan, E. J., & Quinn, B. G. (1979). The determination of the order of autoregression. Journal of the Royal Statistical Society: Series B (Methodological), 41(2), 190-195.

Instituto Nacional de Meteorologia. (2020). Recuperado em 15 de outubro de 2020, de https://portal.inmet.gov.br/dadoshistoricos#.

Ljung, G. M., & Box, G. E. P. (1978). On a measure of lack of _t in time series models. Biometrika, 65(2), 97-303.

Mello, Y. R., & Oliveira, T. M. N. (2016). Análise estatística e geoestatística da precipitação média para o município de Joinville/SC. Revista Brasileira de Meteorologia, 31(2), 229-239.

Miranda, T. P. (2016). Previsão da precipitação mensal do município de Ouro Branco - MG, por meio de modelos de séries temporais. Dissertação de mestrado, Universidade Federal de São João Del Rei, São João Del Rei, MG, Brasil.

Moraes, B. C., Costa, J. M. N., Costa, A. C. L., & Costa, M. H. (2005). Variação espacial e temporal da precipitação no estado do Pará. Acta Amazônica, 35(2), 207-214.

Morettin, P. A., & Toloi, C. M. C. (2006). Análise de Séries Temporais (2a ed.). São Paulo: E. Blucher.

Paiva, D. A., Herval, A. C. F., & Sáfadi, T. (2019). Metodologia de Séries Temporais como ferramenta de análise na produção de frangos no Brasil. Sigmae, 8(2), 227-237.

Passos, M. L. V., Raposo, A. B., & Mendes, T. J. (2017). Precipitação pluviométrica mensal e anual provável para o município de São Mateus /ES. Agropecuária Científica no Semiárido, 13(2), 162-168.

Pereira, A. R., Costa, A. S., Oliveira, V. G., Borges, P. F., & Filho, A. I. (2015). Análise do comportamento das médias anuais da precipitação pluvial e temperatura da cidade de Areia, Paraíba. Gaia Scientia, 9(1), 67-73.

R Development Core Team. (2021). R: a language and environment for statistical computing. Vienna: R Foundation for statistical computing. http://www.Rproject.org.

Santos, F. A., & Aquino, C. M. S. (2017). Análise da precipitação pluviométrica no município de Castelo do Piauí, Nordeste do Brasil. Geousp, 21(2), 619-633.

Published

04/06/2021

How to Cite

SANTOS, P. H. A. B. .; DELFINO, O. A. dos S.; SANTOS, R. V. R. dos .; NASCIMENTO, M. do. Adjustment of a time series model to predict rainfall . Research, Society and Development, [S. l.], v. 10, n. 6, p. e41810615643, 2021. DOI: 10.33448/rsd-v10i6.15643. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/15643. Acesso em: 23 jun. 2021.

Issue

Section

Exact and Earth Sciences