Efficiency verification of a UV-C radiation disinfection device

Authors

DOI:

https://doi.org/10.33448/rsd-v10i6.15817

Keywords:

Sterilization; Disinfection; Microorganism; SARS- COV-2; COVID-19; Ultraviolet radiation.

Abstract

The COVID-19 pandemic, caused by the SARS-COV-2 virus, highlighted the need to develop safe and economically viable methods for carrying out disinfections on a commercial and domestic scale. Coronaviruses are more susceptible to UV-C radiation than fungi and bacteria and several studies related to the efficiency of UVC against the virus that causes COVID-19 have already been carried out using substitute microorganisms. Thus, this study sought to develop a device accessible to lay users for use in materials that cannot be subjected to conventional methods of eliminating microorganisms (chemical or thermal disinfection). This research proposed the production and validation of a portable UV-C emitting device for the disinfection of substrates susceptible to contamination by bacteria, fungi and pathogenic viruses. The device was developed from materials accessible to most companies and the population. Then, the device's efficiency was validated by exposing microbial cultures (Gram positive, negative bacteria and yeast) at different time intervals. The device was developed entirely from low-cost and accessible materials. All tested microorganisms (Candida albicans, Staphylococcus aureus and Escherichia coli) were removed from the culture medium in less than 20 min. exposure. The device developed in this study can be built by most companies and the population. The device proved to be effective in reducing the risk of contagion from different pathogenic microorganisms, suggesting its effectiveness against SARS-COV-2 that causes the COVID-19 pandemic.

References

Buonanno, M., Welch, D., Shuryak, I., Brenner, D.J. (2020). Far-UVC light efficiently and safely inactivates airborne human coronaviruses. Nature Researcharticle, 10:10285.

Cadnum, J. L., Li1, D.F., Jones, L.D., Redmonde, S.N., Pearlmutter, B., Wilson, B.M., Donskey, C.L. (2021). Evaluation of Ultraviolet-C Light for Rapid Decontamination of Airport Security Bins in the Era of SARS-CoV-2. Pathogens and Immunity, 5 (1), 133-142.

Choi, H., Chatterjee, P., Lichtfouse, E., Martel, J.A., Hwang, M., Jinadatha, C., Virender K. Sharma. (2021). Classical and alternative disinfection strategies to control the COVID-19 virus in healthcare facilities: a review. Environmental Chemistry Letters.

Dos Santos, V. C., Da Fonseca, R. C. C., & Cardoso, D. D’O. (2008). Fator de visão da radiação: aplicação na determinação da irradiância de lâmpada ultravioleta de bronzeamento artificial. RMCT 3° QUADRIMESTRE DE 2008 (rmct.ime.eb.br).

Dhama, K., Khan, S., Tiwari,R., Sircar, S., Bhat,S., Malik, Y.S., Pal Singh, K., Chaicumpa, W., Bonilla-Aldana, D. K., & Rodriguez-Morales, A.J. (2020). Clinical Microbiology Reviews, 33 (4).

Ferreira, E. M. S., de Souza, B. G., Silva, P. W. P., Miranda, W. L., Pimenta, R. S., & Silva, J. F.M. (2020). Sars-cov-2 - aspectos relacionados a biologia, propagação e transmissão da doença emergente covid-19. Desafios - Revista Interdisciplinar Da Universidade Federal Do Tocantins, 7 (Especial-3), 9-17.

García de Abajo, F. J., Hernández, R. J., Kaminer, I., Meyerhans, A., Rosell-Llompart, J., & Sanchez-Elsner, T. (2020). Back to Normal: An Old Physics Route to Reduce SARS-CoV-2 Transmission in Indoor Spaces. ACS Nano, 14, 7704.

Haji Malayeri, A., Mohseni, M., Cairns, B., & Bolton, J.R. (2016). Fluence (UV Dose) Required to Achieving Incremental Log Inactivation of Bacteria, Protozoa, Viruses and Algae. IUVA News, 18, 4-6.

Howell, J. R. (2021). A CATALOG OF RADIATION HEAT TRANSFER CONFIGURATION FACTORS. University of Texas at Austin. Disponível em: <http://www.thermalradiation.net/tablecon.html>. Acesso em: 08 de abril de 2021.

Kampf, G., Todt, D., Pfaender, S., & Steinmann, E. (2020). “Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents”. Journal of Hospital Infection, 104 (3).

Kowalski, W. J. (2001). Design and optimization of UVGI air desinfection systems. Doctoral thesis, The Pennsylvania State University.

Kowalski, W. J. (2009). Ultraviolet Germicidal Irradiation Handbook: UVGI for Air and Surface Disinfection. New York, Springer, 504 p. ISBN 978-3-642-01998-2.

Modest, M. F. (2013). Radiative Heat Transfer. New York, McGraw-Hill, (Third Edition). ISBN: 978-0-12-386944-9

Morais, V. N, Dias, F. C.B, Santana, T.B.A, Maciel, L.G., Souza, Y.C de S., Mescoloti1, A.A., Milagres, F.A. de P., & Pimenta, R.S. (2021). Doença pelo coronavírus 2019: Uma revisão sistemática. Desafios - Revista Interdisciplinar Da Universidade Federal Do Tocantins, 8 (1), 1-17.

Raeiszadeh, M., & Adeli, B. (2020). A Critical Review on Ultraviolet Disinfection Systems against COVID-19 Outbreak: Applicability, Validation, and Safety Considerations. ACS Photonics, 11, 2941–295.

Silva, J. M. B. da., Loureiro, L. H., Silva, I. C. M. da., & Novaes, M. L. (2021). Coronavirus and the disinfection and reprocessing protocols of hospital articles. Research, Society and Development, 9 (9) e29996187.

Torres, A.E., Lyons, A.B., Narla, S., Kohli, I., Parks-Miller, A., Ozog, D., Hamzavia, I.H., Henry W., & Lim, H.W. (2020). Ultraviolet-C and other methods of decontamination of filtering facepiece N-95 respirators during the COVID-19 pandemic. Photochem. Photobiol. Sci., 19, 746.

Three-Dimensional View Factors, 2021. Disponível em: <http://fchart.com/ees/heat_transfer_library/shape_factors/shape_factors.html>. Acesso em: 08 de abril de 2021.

Van Doremalen, N., Bushmaker, T., Morris, D.H., Holbrook, M.G., Gamble, A., Williamson, B.N., Tamin, A., Harcourt, J.L., Thornburg N.J., Gerber, S.I., Lloyd-Smith J.O., & de Wit, E. (2020). Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. N. Engl. J. Med., 382 (16), 1564.

Szeto, W., Yam, W.C., Huang, H., & Leung, D.Y.C (2020). The efficacy of vacuum-ultraviolet light disinfection of some common environmental pathogens. BMC Infectious Diseases, 20 (127).

Zhou, E., Yu, T., Du, R., Fan, G., Liu, Y., Liu, Z., Xiang, J., Wang, J., Song, B., Gu, X., Guan, L., Wei, Y., Li, H., Wu, X., Xu, J., Tu, S., Zhang, Y., Chen, H., & Cao, B. (2020). “Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study”. The Lancet, 395, n. 10229-62.

Published

30/05/2021

How to Cite

ROCHA, A. S. da .; SILVA, C. A. da .; SOUZA, R. L. de .; CHOQUE, N. M. S. .; SOARES, D. B. .; FERREIRA, E. M. S. .; ARAÚJO, M. R. .; SILVA, J. F. M. da .; PIMENTA, R. S. . Efficiency verification of a UV-C radiation disinfection device. Research, Society and Development, [S. l.], v. 10, n. 6, p. e31310615817, 2021. DOI: 10.33448/rsd-v10i6.15817. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/15817. Acesso em: 15 jan. 2025.

Issue

Section

Health Sciences