Mechanical characterization of concretes produced with construction and demolition waste




Concrete; CDW; Workability; Mechanical Characterization.


The construction industry is responsible for the generation of large volumes of waste, known as construction and demolition waste (CDW). Around the world, millions of tons of these wastes are generated annually, which often become important environmental liabilities. The situation gets worse as the sector develops. In Europe, only 15 of the 27 countries in the European Union annually produce around 180 million tonnes of CDW, in Brazil, the data about this indicates that in 2014 the municipalities collected about 45 million tons of CDW, quantity 4.1% higher than in 2013. In this scenario, the present study aims to evaluate the partial replacement of natural aggregates by CDW (aggregates of concrete waste) in the production of concretes. In this sense, the effects of this substitution on the workability and mechanical characteristics of the concretes produced, as well as the influence of the mixing method and the percentage of superplasticizer additive on the same characteristics were evaluated. The methodology basically consists in the production of seven different traits, which are references and different combinations of mixing method, aggregate substitutions and superplasticizer percentages. Specimens of these traces were molded for mechanical characterization. Workability parameters were also evaluated. It is concluded that the workability is strongly affected by the addition of CDW, but a good workability can be obtained with the use of superplasticizer additives. The mixing method did not change the results obtained for this property. The results also indicate that the compressive and tensile strengths are not negatively affected by the substitution of aggregates, as well as being not significantly affected by the presence of the percentages of superplasticizer used, nor by the mixing methods.


Associação brasileira de normas técnicas. (1987). NBR 9776. Agregados - Determinação da massa específica de agregados miúdos por meio do frasco Chapman. Rio de Janeiro.

Associação brasileira de normas técnicas. (1996). NBR 7215: Cimento Portland - Determinação da resistência à compressão. Rio de Janeiro.

Associação brasileira de normas técnicas. (1998). NBR NM 67. Concreto – Determinação da consistência pelo abatimento do tronco de cone. Rio de Janeiro.

Associação brasileira de normas técnicas. (2001). NBR NM 51. Agregado graúdo – Ensaio de abrasão “Los Ángeles”. Rio de Janeiro.

Associação brasileira de normas técnicas. (2003). NBR NM 248. Agregados – Determinação da composição granulométrica. Rio de Janeiro.

Associação brasileira de normas técnicas. (2006). NBR NM 45. Agregados – Determinação da massa unitária e do volume de vazios. Rio de Janeiro.

Associação brasileira de normas técnicas. (2009a). NBR 7211. Agregados para concreto - Especificação. Rio de Janeiro.

Associação brasileira de normas técnicas. (2009b). NBR NM 53. Agregado graúdo – Determinação da massa específica, massa específica aparente e absorção de água. Rio de Janeiro.

Associação brasileira de normas técnicas. (2011). NBR 7222. Concreto e argamassa - Determinação da resistência à tração por compressão diametral de corpos de prova cilíndricos. Rio de Janeiro.

Associação brasileira de normas técnicas. (2018). NBR 16697: Cimento Portland - Requisitos. Rio de Janeiro.

Associação brasileira de empresas de limpeza pública e resíduos especiais - ABRELPE. (2014). Panorama dos Resíduos Sólidos no Brasil - 2014. Retrieved from

Amorim, P., De Brito, J., & Evangelista, L. (2012). Concrete made with coarse concrete aggregate: Influence of curing on durability. ACI Materials Journal.

Angulo, S. C. (2005). Caracterização de agregados de resíduos de construção e demolição reciclados e a influência de suas características no comportamento de concretos.

Bhutta, M. A. R., Hasanah, N., Farhayu, N., Hussin, M. W., Tahir, M. B. M., & Mirza, J. (2013). Properties of porous concrete from waste crushed concrete (recycled aggregate). Construction and Building Materials.

Etxeberria, M., Vázquez, E., Marí, A., & Barra, M. (2007). Influence of amount of recycled coarse aggregates and production process on properties of recycled aggregate concrete. Cement and Concrete Research.

Evangelista, L., & de Brito, J. (2010). Durability performance of concrete made with fine recycled concrete aggregates. Cement and Concrete Composites.

Geng, J., & Sun, J. (2013). Characteristics of the carbonation resistance of recycled fine aggregate concrete. Construction and Building Materials.

Gomes, M., & De Brito, J. (2009). Structural concrete with incorporation of coarse recycled concrete and ceramic aggregates: Durability performance. Materials and Structures/Materiaux et Constructions.

Hendriks, C. F., Nijkerk, A. A., & Van Koppen, A. E. (2007). O Ciclo da Construção (1a). Brasília.

Kou, S. C., Poon, C. S., & Etxeberria, M. (2011). Influence of recycled aggregates on long term mechanical properties and pore size distribution of concrete. Cement and Concrete Composites.

Limbachiya, M. C. (2004). Coarse recycled aggregates for use in new concrete. Engineering Sustainability, 157(2), 99–106.

Otsuki, N., Miyazato, S., & Yodsudjai, W. (2003). Influence of Recycled Aggregate on Interfacial Transition Zone, Strength, Chloride Penetration and Carbonation of Concrete. Journal of Materials in Civil Engineering.

Pacheco-Torgal, F., Tam, V. W. Y., Labrincha, J. A., Ding, Y., & De brito, J. (2013). Handbook of Recycled Concrete and Demolition Waste. In Handbook of Recycled Concrete and Demolition Waste.

Richardson, A., Coventry, K., & Bacon, J. (2011). Freeze/thaw durability of concrete with recycled demolition aggregate compared to virgin aggregate concrete. Journal of Cleaner Production.

Richardson, A. E., Coventry, K., & Graham, S. (2009). Concrete manufacture with un-graded recycled aggregates. Structural Survey.

Ryou, J., & Lee, Y. S. (2014). Characterization of Recycled Coarse Aggregate (RCA) via a Surface Coating Method. International Journal of Concrete Structures and Materials.

Sagoe-Crentsil, K. K., Brown, T., & Taylor, A. H. (2001). Performance of concrete made with commercially produced coarse recycled concrete aggregate. Cement and Concrete Research.

Tam, V. W. Y., Gao, X. F., & Tam, C. M. (2005). Microstructural analysis of recycled aggregate concrete produced from two-stage mixing approach. Cement and Concrete Research.

Zega, C. J., & Di Maio, Á. A. (2011). Use of recycled fine aggregate in concretes with durable requirements. Waste Management.

Zhang, S., & Zong, L. (2013). Properties of concrete made with recycled coarse aggregate from waste brick. Environmental Progress & Sustainable Energy, 33(4), 1283–1289.




How to Cite

SALLES, P. V.; VIANA, T. M.; GOMES, C. L.; BRAGA, F. C. S.; POGGIALI, F. S. J.; RODRIGUES, C. de S. Mechanical characterization of concretes produced with construction and demolition waste. Research, Society and Development, [S. l.], v. 9, n. 1, p. e56911597, 2020. DOI: 10.33448/rsd-v9i1.1597. Disponível em: Acesso em: 24 sep. 2021.