Performance of a photovoltaic panel (PV) converted to a thermal photovoltaic with collector for hot water (PVT/w)
DOI:
https://doi.org/10.33448/rsd-v10i7.16438Keywords:
Solar energy; Thermal and electric energy; Energy efficiency.Abstract
Tests were carried out in an open environment with two photovoltaic panels, in the city of Dourados/MS, for six non-consecutive days, between the months of June to July 2018, where one panel was kept original (PV), while the other underwent modifications to operate as a photovoltaic-thermal module using (PVT/w), which is connected to a reservoir for hot water accumulation. The tests were carried out according to the open circuit voltage (Voc), the surface temperature of the photovoltaic cells and the water temperature of the cooling and thermoaccumulation system of the PVT/w, to determine the adequate and adequate thermal energy of the thermal yield. The increase in the temperature of the cooling water negatively affects the value of the open circuit voltage, which was, on average, 2.3% higher for PVT/w, which presented a lower surface temperature in all tests. The average thermal efficiency of PVT/w was 242 W m-2, given in an estimate of total efficiency (thermal and electrical) of 349 W m-2, an increase of 161% in relation to the energy efficiency of PV (only electricity), estimated at 106 W m-2 based on information from the manufacturer's technical catalog.
References
Al-Waeli, A. H., Kazem, H. A., Sopian, K. B. & Chaichan, M. T. (2016). Photovoltaic Solar Thermal (PV/T) Collectors Past, Present and Future: A Review. International Journal of Applied Engineering Research. 11(22), 10757-65. ISSN 0973-4562. https://www.researchgate.net/profile/Hussein-A-Kazem/publication/311204612_Photovoltaic_Solar_Thermal_PVT_Collectors_Past_Present_and_Future_A_Review/links/583f11e008ae2d217557dac6/Photovoltaic-Solar-Thermal-PV-T-Collectors-Past-Present-and-Future-A-Review.pdf.
Amori, K. E. & Abd-Alraheen, M. A. (2014). Field study of various ais based photovoltaic/thermal hybrid solar collectors. Renewable energy. 63, 402-14. ISSN 0960-1481. DOI: https://doi.org/10.1016/j.renene.2013.09.047.
ANEEL. Agência Nacional de Energia Elétrica. (2020). Matriz de Energia Elétrica. https://www2.aneel.gov.br/aplicacoes/capacidadebrasil/Combustivel.cfm.
Aste, N., Del Pero, C. & Leonforte, F. (2014). Water flat plate PV–thermal collectors: A review. Solar Energy. 102, 98-115. ISSN 0038-092X. DOI: https://doi.org/10.1016/j.solener.2014.01.025.
Bhargava, A. K., Garg, H. P. & Agarwal, R. K. (1991). Study of a hybrid solar system-solar air heater combined with solar cells. Energy Conversion and Management. 31(5), 471-79. ISSN 0196-8904. DOI: https://doi.org/10.1016/0196-8904(91)90028-H.
Beltrão, R. E. de A. (2008). Efeito da Temperatura na Geração de Energia de Módulos Fotovoltaicos Submetidos a Condições Climáticas Distintas. Estudo de Caso para as Localidades de Recife e Araripina. (Dissertação de Mestrado). Universidade Federal de Pernambuco. Departamento de Energia Nuclear. Recife-PE. https://attena.ufpe.br/bitstream/123456789/9740/1/arquivo8636_1.pdf.
Borgnakke, C. & Sonntag, R. E. (2009). Fundamentos da Termodinâmica. 7a edição, São Paulo, Ed. Edgard Blücher, 454 p.
BP. BP Statistical Review of World Energy. (2019). http://www.bp.com.
Burek, P., Satoh, Y., Fischer, G., Kahil, M. T., Scherzer, A., Tramberend, S., Nava, L. F., Wada, Y., Eisner, S., Flörke, M., Hanasaki, N., Magnuszewski, P., Cosgrove, B. & Wiberg, D. (2016). Water Futures and Solution: Fast Track Initiative (Final Report). IIASA Working Paper (International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria). http://pure.iiasa.ac.at/id/eprint/13008/1/WP-16-006.pdf.
Ancines, C., Krenzinger, A. & Soares, L. D. M. (2016). Comparação entre o desempenho de um coletor híbrido térmico fotovoltaico com um coletor plano e um módulo fotovoltaico convencional. Avances em Energías Renovables y Medio Ambiente. 20(4). 81-92. Impreso em la Argentina. https://www.researchgate.net/publication/317587874_COMPARACAO_ENTRE_O_DESEMPENHO_DE_UM_COLETOR_HIBRIDO_TERMICO_FOTOVOLTAICO_COM_UM_COLETOR_PLANO_E_UM_MODULO_FOTOVOLTAICO_CONVENCIONAL.
Chow, T. T. (2010). A review on photovoltaic/thermal hybrid solar technology. Applied Energy. 87, 365–79. ISSN 0306-2619. DOI: https://doi.org/10.1016/j.apenergy.2009.06.037.
Cox, C. H. & Raghuraman, P. (1985). Design considerations for flat-platephotovoltaic/thermal collectors. Solar Energy. 35(3), 227-41. ISSN 0038-092X. DOI: https://doi.org/10.1016/0038-092X(85)90102-1.
Daghigh, R., Ruslan, M. H. & Sopian, K. (2011). Advances in liquid based photovoltaic/thermal (PV/T) collectors. Renewable and Sustainable Energy Reviews. 15, 4156-70. ISSN 1364-0321. DOI: https://doi.org/10.1016/j.rser.2011.07.028.
Da Silva, J. A. A., De Alvarenga, B. P., Pimentel, S. P. & Marra, E. G. (2018). Tratamento e Análise de Dados Solarimétricos da Estação Meteorológica da EMC/UFG. In: VII Congresso Brasileiro de Energia Solar, Gramado. Anais do VII Congresso Brasileiro de Energia Solar. https://anaiscbens.emnuvens.com.br/cbens/article/view/725.
Da Silva, V. O. (2015). Estudo e Modelagem da Arquitetura Modular de uma Usina Solar Fotovoltaica Arrefecida com Protótipo de Verificação. (Dissertação de Mestrado). Escola Politécnica da Universidade de São Paulo. Departamento de Engenharia de Energia e Automação Elétricas. São Paulo - SP. https://www.teses.usp.br/teses/disponiveis/3/3143/tde-22072016-163255/en.php.
De Souza, J. D., Da Silva, B. B. & Ceballos, J. C. (2008). Estimativa da radiação solar global à superfície usando um modelo estocástico: caso sem nuvens. Revista Brasileira de Geofísica. 26(1), 31-44. ISSN 0102-261X. DOI: https://doi.org/10.1590/S0102-261X2008000100003.
De Souza, M. A., De Souza, J. P. & Pereima, A. T. (2018). Simplified Methodology for Temperature Calculation of Operation and Photovoltaic Modules Yield in Non-Standardized Environmental Conditions. Brazilian Archives of Biology and Technology. 61, no.spe: e18000170. ISSN 1678-4324. DOI: https://doi.org/10.1590/1678-4324-smart-2018000170.
Dorobantu, L., Popescu, M. O., Popescu, C. L. & Craciunescu, A. (2013). Experimental Assessment of PV Panels Front Water Cooling Strategy. International Conference on Renewable Energies and Power Quality. RE&PQJ. 1(11), 1009-12. ISSN 2172-038 X. DOI: https://doi.org/10.24084/repqj11.510.
Duffie, J. A. & Beckman, W. A. (2013). Solar Engineering of Thermal Processes. 4th Edition, John Wiley & Sons. 2013. 936 p.
Dupeyrat, P., Ménézo, C. & Fortuin, S. (2014). Study of the thermal and electrical performances of PVT solar hot water system. Energy and Buildings. 68, 751-55. ISSN 0378-7788. DOI: https://doi.org/10.1016/j.enbuild.2012.09.032.
Dupré, O., Vaillon, R. & Green, M. A. (2017). Thermal Behavior of Photovoltaic Devices: Physics and Engineering. 1ª Edição, Ed. Springer, 220 p.
EIA. Energy Information Administration. (2019). International Energy Outlook 2019: With Projections to 2050. https://www.eia.gov/outlooks/ieo/pdf/ieo2019.pdf.
EPE. Empresa de Pesquisa Energética. (2015). Plano Decenal de Expansão de Energia 2024. Brasília: Ministério de Minas e Energia, Secretaria de Planejamento e Desenvolvimento Energético, Empresa de Pesquisa Energética. https://www.gov.br/mme/pt-br/assuntos/secretarias/planejamento-e-desenvolvimento-energetico/publicacoes/plano-decenal-de-expansao-de-energia/documentos/04-plano-decenal-de-expansao-de-energia-pde-2024.pdf
FAO. Food and Agriculture Organization of the United Nations. (2011). “Energy-smart” food for people and climate. Issue paper. http://www.fao.org/3/a-i2454e.pdf.
FAO. Food and Agriculture Organization of the United Nations. (2013). Food Wastage Footprint - Impacts on Natural Resources. ISBN 978-92-5-107752-8. http://www.fao.org/3/i3347e/i3347e.pdf.
FAO. Food and Agriculture Organization of the United Nations. (2017). The Future of Food and Agriculture - Trends and challenges. Roma. http://www.fao.org/3/i6583e/i6583e.pdf.
Ferreira, E.B., Cavalcanti, P.P. & Nogueira, D.A. (2014). ExpDes: An R Package for ANOVA and Experimental Designs. Applied Mathematics. 5, 2952-58. DOI: http://dx.doi.org/10.4236/am.2014.519280.
Florschuetz, L.W. (1979). Extension of the Hottel–Whillier model to the analysis of combined photovoltaic/thermal flat plate collectors. Solar Energy. 22(4), 361-66. ISSN 0038-092X. DOI: https://doi.org/10.1016/0038-092X(79)90190-7.
Fudholi, A., Sopian, K., Yazdi, M. H., Ruslan, M. H., Ibrahim, A. & Kazem, H. A. (2014). Performance analysis of photovoltaic thermal (PVT) water collectors. Energy Conversion and Management. 78, 641-51. ISSN 0196-8904. DOI: https://doi.org/10.1016/j.enconman.2013.11.017.
Fujisawa, T., Tani, T. (1997). Annual exergy evaluation on photovoltaic-thermal hybrid collector. Solar Energy Materials and Solar Cells. 47(1-4), 135-48. ISSN 0927-0248. DOI: https://doi.org/10.1016/S0927-0248(97)00034-2.
Gnoatto, E., Dallacort, R., Ricieri, R. P., Silva, S. L. & Ferruzi, Y. (2005). Determinação da curva característica de um painel fotovoltaico em condições reais de trabalho. Acta Scientiarium. Technology. Maringá. 27(2), 191-96. ISSN: 1806-2563. https://www.redalyc.org/articulo.oa?id=303226514011.
Guerra, M. I. S. (2016). Análise do desempenho elétrico de um gerador fotovoltaico com o auxílio da tecnologia PVT. 141f. (Dissertação de Mestrado). Centro de Energias Alternativas e Renováveis, Universidade Federal da Paraíba, João Pessoa. https://repositorio.ufpb.br/jspui/handle/123456789/11644.
Hajjaj, C., Benhmida, M., Bendaoud, R., Amiry, H., Bounouar, S., Ghennioui, A., Chanaa, F., Yadir, S., Elhassnaoui, A. & Ezzaki, H. (2019). A PVT Cooling System Design and Realization: Temperature Effect on the PV Module Performance Under Real Operating Conditions. International Journal of Renewable Energy Research. Marrocos. 9(1), 1-13. https://www.ijrer.org/ijrer/index.php/ijrer/article/view/8789.
Ji, J., Lu, J. P., Chow, T. T., He, W. & Pei, G. (2007). A sensitivity study of a hybrid photovoltaic/thermal water-heating system with natural circulation. Applied Energy. 84, 222-37. ISSN 0306-2619. DOI: https://doi.org/10.1016/j.apenergy.2006.04.009.
Jordan, R. A., Seye, O. & Motomiya, A. V. (2015). A Influência da vazão de água sobre o rendimento de um coletor solar plano construído em termoplástico. Revista Engenharia Agrícola. Jaboticabal. 35(4), 665-75. ISSN 1809-4430. DOI: https://doi.org/10.1590/1809-4430-Eng.Agric.v35n4p665-675/2015.
Kern Jr, E. C. & Russel, M. C. (1978). Combined photovoltaic and thermal hybrid collector systems. Proceedings of the 13th ISES Photovoltaic Specialists, Washington. 1153-57. https://www.osti.gov/servlets/purl/6352146.
Köppen, W. & Geiger, R. (1928). Klimate der Erde. Gotha: Verlag Justus Perthes. Wall-map 150 x 200 cm.
Kumar, A., Baredar, P. & Qureshi, U. (2015). Historical and recent development of photovoltaic thermal (PVT) technologies. Renewable and Sustainable Energy Reviews. 42, 1428-36. ISSN 1364-0321. DOI: https://doi.org/10.1016/j.rser.2014.11.044.
Medeiros, R. R. B. (2017). Estudo de desempenho de um sistema híbrido fotovoltaico/térmico. 79f. (Dissertação de Mestrado). Centro de Tecnologia, Universidade Federal do Rio Grande do Norte, Natal. https://repositorio.ufrn.br/jspui/handle/123456789/22399.
Pereira, A. B, Vrisman, A. L. & Galvani, E. (2002). Estimativa da radiação solar global diária em função do potencial de energia solar da superfície do solo. Scientia Agricola. 59(2), 211-16. ISSN 1678-992X. DOI: https://doi.org/10.1590/S0103-90162002000200002.
Pereira, A. S., Shitsuka, D. M., Parreira, F. J. & Shitsuka, R. (2018). Metodologia da pesquisa científica. [e-book]. Santa Maria. Ed. UAB/NTE/UFSM. https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1.
Pinho, J. T. & Galdino, M. A. (Org.) (2014). Grupo de Trabalho de Energia Solar (GTES). Manual de Engenharia para Sistemas Fotovoltaicos. http://www.cresesb.cepel.br/publicacoes/download/Manual_de_Engenharia_FV_2014.pdf.
Prakash J. (1994). Transient Analysis of a Photovoltaic Thermal Solar Collector for Cogeneration of Electricity and Hot Air Water. Energy Conversion and Management. 35, 967-72. ISSN 0196-8904. DOI: https://doi.org/10.1016/0196-8904(94)90027-2.
R Development Core Team. (2014). R: Language and Environment for Statistical Computing. R Foundation for Statistical Computing. http://www.R-project.org.
Rockendorf, G., Sillmann, R., Podlowski, L. & Litzenburger, B. (1999). PV hybrid and thermoelectric collectors. Solar Energy. 67, 227-37. ISSN 0038-092X. DOI: https://doi.org/10.1016/S0038-092X(00)00075-X.
Ruviario, R. S., Daltrozo, J. G., Garlet, L., De Lourenço, W. M. & Dos Santos, I. P. (2018). Análise da Variação da Eficiência do Módulo Fotovoltaico em Função da Temperatura. In: VII Congresso Brasileiro de Energia Solar - Gramado. https://anaiscbens.emnuvens.com.br/cbens/article/view/29/29?fbclid=IwAR387SSU2hENOZfRUho_SWKXXQvUVs3WB9T4p88dSyr4CR3--LFIkqBKSWE.
Schwenzer, J. A., Rakocevic, L., Gehlhaar, R., Abzieher, T., Gharibzadeh, S., Moghadamzadeh, S., Quintilla, A., Richards, B. S., Lemmer, U. & Paetzold, U. W. (2018). Temperature Variation-Induced Performance Decline of Perovskite Solar Cells. ACS Appl. Mater. Interfaces. 10(19), 16390-99. DOI: https://doi.org/10.1021/acsami.8b01033.
Shyam, Tiwari, G. N. & Al-Helal, I. M. (2015). Analytical expression of temperature dependent electrical efficiency of N-PVT water collectors connected in series. Solar Energy. 114, 61–76. ISSN 0038-092X. DOI: https://doi.org/10.1016/j.solener.2015.01.026.
Simioni, T. (2017). O Impacto da Temperatura para o Aproveitamento do Potencial Solar Fotovoltaico do Brasil. (Dissertação de Mestrado). Universidade Federal do Rio de Janeiro (UFRJ). Rio de Janeiro-RJ. http://www.ppe.ufrj.br/index.php/pt/publicacoes/dissertacoes/2017/268-o-impacto-da-temperatura-para-o-aproveitamento-do-potencial-solar-fotovoltaico-do-brasil.
Tiwari, G. N., Meraj, Md. & Khan, M. E. (2018). Exergy analysis of N-photovoltaic thermal-compound parabolic concentrator (N-PVT-CPC) collector for constant collection temperature for vapor absorption refrigeration (VAR) system. Solar Energy. 173, 1032-42. ISSN 0038-092X. DOI: https://doi.org/10.1016/j.solener.2018.08.031.
Tripanagnostopoulos, Y., Nousia, T., Souliotis, M. & Yianoulis, P. (2002). Hybrid photovoltaic/thermal solar systems. Solar Energy. 72, 217-34. ISSN 0038-092X. DOI: https://doi.org/10.1016/S0038-092X(01)00096-2.
UN. United Nations. (Org.). (2019). “Growing at a slower pace, world population is expected to reach 9.7 billion in 2050 and could peak at nearly 11 billion around 2100”. https://www.un.org/development/desa/en/news/population/world-population-prospects-2019.html.
Zondag, H. A., De Vries, D. W., Van Helden, W. G. J., Van Zolingen, R. J. C. & Van Steenhoven, A. A. (2003). The yield of different combined PV–thermal collector designs. Solar Energy. 74, 253-69. ISSN 0038-092X. DOI: https://doi.org/10.1016/S0038-092X(03)00121-X.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Rodrigo Aparecido Jordan; Orlando Moreira Junior; Bruno Machado Antunes; Anamari Viegas de Araujo Motomiya; Ítalo Sabião Sanches; Édipo Sabião Sanches; Agleison Ramos Omido; Elton Aparecido Siqueira Martins
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.