Leishmaniasis treatment, current therapy limitations and new alternative requirements: A narrative review

Authors

DOI:

https://doi.org/10.33448/rsd-v10i7.16543

Keywords:

Neglected Diseases; Leishmania; Pharmacological treatment; Molecular mechanisms of pharmacological action.

Abstract

Leishmaniasis groups some neglected diseases caused by intracellular protozoa Leishmania. Its main clinical forms are the tegumentary (LT) and Visceral (LV). Currently, the therapy against leishmaniasis is based on the use of five drugs: the pentavalent antimonials, amphotericin B and its liposomal formulation, miltefosine, paromomycin and pentamidine. These compounds present limitations that difficult patient’s adherence to treatment, such as high toxicity and the need for prolonged parenteral administration, in addition to the selection of resistant strains. Thus, employing the literature narrative review, we brought a panorama of the current leishmaniasis treatment, its elucidated action mechanisms, attributed toxicity, adverse effects and administration routes. Aiming to point this, the more updated data available in the literature were brought to facilitate access information on therapeutic options, in addition to new therapeutic alternatives and vaccine perspectives against this neglected disease.

Author Biographies

Alexandre Silva Santiago, Universidade do Estado da Bahia

Programa de Pós-graduação em Ciências Farmacêuticas (PPGFARMA), Departamento de Ciências da Vida, Universidade do Estado da Bahia, UNEB, Salvador, BA, Brasil; 2 Laboratório de Bioinformática e Modelagem Molecular (LaBiMM), Faculdade de Farmácia, Universidade Federal da Bahia, Salvador, BA, Brasil;

Samuel Silva da Rocha Pita, Universidade Federal da Bahia

Programa de Pós-graduação em Ciências Farmacêuticas (PPGFARMA), Departamento de Ciências da Vida, Universidade do Estado da Bahia, UNEB, Salvador, BA, Brasil; 2 Laboratório de Bioinformática e Modelagem Molecular (LaBiMM), Faculdade de Farmácia, Universidade Federal da Bahia, Salvador, BA, Brasil;

Elisalva Teixeira Guimarães, Universidade do Estado da Bahia

Programa de Pós-graduação em Ciências Farmacêuticas (PPGFARMA), Departamento de Ciências da Vida, Universidade do Estado da Bahia, UNEB, Salvador, BA, Brasil Núcleo de Estudo e Pesquisa em Histopatologia (NUHISPAT), Departamento de Ciências da Vida, Universidade do Estado da Bahia, UNEB, Salvador, BA, Brasil; 4 Laboratório de Engenharia Tecidual e Imunofarmacologia (LETI), Instituto Gonçalo Moniz, Fundação Osvaldo Cruz, Salvador, BA, Brasil

References

Alvar, J., Croft, S., Olliaro, P., & David, H. M. (2008). Chemotherapy in the treatment and control of Leishmaniasis. Advances in Parasitology. 223-274.

Amaral, A. T., Andrade, C. H., Kummerle, A., & Guido, R. V. C. (2017). A evolução da Química Medicinal no Brasil: avanços nos 40 anos da Sociedade Brasileira de Química. Química Nova, 694-700.

Bacelar, I. O. L., Tsubone, T. M., Pavani, C., & Baptista, M. S. (2015). Eficiência fotodinâmica: da fotoquímica molecular à morte celular. Int J Mol Sci. p. 20523–59.

Barratt, G., & Bretagne, S. (2007). Optimizing efficacy of amphotericin B through nanomodification. The International Journal of Nanomedicine, p. 301.

Bastos, M. M., Boechat, N., Hoelz, L. V. B., & de Oliveira, A. P. (2016). Quimioterapia Antileishmania: Uma Revisão da Literatura. Rev. Virtual Quim., 8 (6), 2072-2104.

Beig, M., Oellien, F., Garoff, L., Noack, S., Krauth-Siegel, R. L., & Selzer, P. M. (2015). Trypanothione reductase: a target protein for a combined in vitro and in silico screening approach. PLoS Negl Trop Dis. v. 9, n. 6.

Beugnet, F., Halos, L., & Guillot, J. (2018). Textbook of Clinical Parasitology in dogs and cats. Servet editorial - Grupo Asís Biomedia, S.L.

Boni, Marina. (2019). Leishmaniose: estudo de combinação de Fase III. DNDi América Latina. Disponível em: <https://www.dndial.org/2019/comunicacao-e-informacao/leishmaniose-estudo-de-combinacao-de-fase-iii/>.

Brasil, Ministério da Saúde. (2018). Manejo Terapêutico de Pacientes com Leishmaniose Tegumentar Americana (LTA). Santa Catarina, 13 p. Disponível em <http://www.dive.sc.gov.br/conteudos/publicacoes/ManualLTAvisualiza%C3%A7%C3%A3o.pdf>.

Bray, P. G., Barrett, M. P., Ward, S. A., & De Koning, H. P. (2013). Pentamidine uptake and resistance in pathogenic protozoa: past, present and future. Trends in Parasitology. 19, 232.

Chawla, B., Jhingran, A., Panigrahi, A., Stuart, K. D., & Madhubala, R. (2011). Paromomycin affects translation and vesicle-mediated trafficking as revealed by proteomics of paromomycin susceptible resistant Leishmania donovani. PLoS One. 6(10).

Coelho, A. C., Messier, N., Ouellette, M., & Cotrim, P. C. (2007). Role of the ABC transporter PRP1 (ABCC7) in pentamidine resistance in Leishmania amastigotes. Antimicrob Agents Chemother. 51, p.3030–2.

Cojean, S., Houzé, S., Haouchine, D., Huteau, F., Lariven, S., Hubert, V., & Matheron, S. (2012). Leishmania resistance to miltefosine associated with genetic marker. Emerg Infect Dis. 18, 704-706.

Cotrina, F. J., Iniesta, V., Monroy, I., Baz, V., Hugnet, C., Marañon, F., A& lonso, C. (2018). A large-scale field randomized trial demonstrates safety and efficacy of the vaccine LetiFend against canine leishmaniosis. Vaccine. 36, 1972–1982.

Coura-Vital, W., Leal, G. G. De A., Marques, L. A., Pinheiro, A. Da C., Carneiro, M., & Reis, A. B. (2018). Effectiveness of deltamethrin-impregnated dog collars on the incidence of canine infection by Leishmania infantum: A large scale intervention study in an endemic area in Brazil. PLoS one. 13(12).

Croft, S. L., & Coombs, G. H. (2003). Leishmaniasis current chemotherapy and recent advances in the search for novel drugs. Trends in Parasitology. 19, 502.

DNDi, (2019). Iniciativa Medicamentos para Doenças Negligenciadas. Rumo a uma nova geração de tratamentos para as leishmanioses. DNDi América Latina. <https://dndi.org/wp-content/uploads/2019/09/DNDi_Leishmaniasis_2019_POR.pdf>.

Dorlo, T. P., Balasegaram, M., Beijnen, J. H., & De Vries, P. J. (2012). Miltefosine: a review of its pharmacology and therapeutic efficacy in the treatment of leishmaniasis. J. Antimicrob. Chemother. 67, 2576-2597.

Dukhyil A. A. A. B. (2019). Targeting Trypanothione Reductase of Leishmanial major to Fight Against Cutaneous Leishmaniasis. Infect Disord Drug Targets. 19, 388-393.

Fangueiro, J. F., Marques, I. R., Severino, P., Santana, M. H. A., & Souto, E. B. (2012). Desenvolvimento, produção e caracterização de nanocristais de fármacos pouco solúveis. Química Nova. 35, 1848-1853.

Fernandes, C. B., Junior, J. T. M., Jesus, C., Souza, B. M., Larangeira, D. F., Fraga, D. B., Barrouin-Melo, S. M. (2014). Comparison of two commercial vaccines against visceral leishmaniasis in dogs from endemic areas: IgG, and subclasses, parasitism, and parasite transmission by xenodiagnosis. Vaccine. 1287–1295.

Flohé, L. (2012). The trypanothione system and the opportunities it offers to create drugs for the neglected kinetoplast diseases. Biotechnology Advances. 30, 294-301.

Freitas-Junior, L. H., Chatelain, E., Kim, H. A., & Siqueira-Neto J. L. (2012). Visceral leishmaniasis treatment: What do we have, what do we need and how to deliver it?. Int. J. Parasitol. Drugs Drug Resist. 2, 11-19.

Guerin, P. J., Olliaro, P., Sundar, S., Boelaert, M., Croft, S. L., Desjeux, P., Wasunna, M. K., & Bryceson, A. D. M. (2002). Visceral leishmaniasis: current status of control, diagnosis, and treatment, and a proposed research and development agenda. The Lancet Infectious Diseases. v. 2, p. 494.

Hendrickx, S., Caljon, G., & Maes, L. (2019). Need for sustainable approaches in antileishmanial drug Discovery. Parasitology Research.

Hilerowicz, Y., Koren, A., Mashiah, J., Katz, O., Sprecher, E., & Artzi, O. (2018). Fractional ablative carbon dioxide laser followed by topical sodium stibogluconate application: A treatment option for pediatric cutaneous leishmaniasis. Pediatr Dermatol. v.35, n.3, p. 366-369.

Kato, K. C., Morais-Teixeira, E., Reis, P. G., Silva-Barcellos, N. M., Salaün, P., Campos, P. P., Corrêa-Junior, J. D., Rabello, A., Demicheli, C., & Frézarda, F. (2014). Hepatotoxicity of Pentavalent Antimonial Drug: Possible Role of Residual Sb(III) and Protective Effect of Ascorbic Acid. Antimicrobial Agents and Chemotherapy. v.58, p.481.

Kevric, I., Cappel, M. A., & Keeling, J. H. (2015). New World and Old World Leishmania Infections a Practical Review. Dermatologic Clinics. 33, 579.

Kip, A. E., Schellens, J. H. M., Beijnen, J. H., & Dorlo, T. P. C. (2018). Clinical Pharmacokinetics of Systemically Administered Antileishmanial Drugs. Clin Pharmacokinet. v.57, p.151–176.

Koff A. B., & Rosen T. (1994). Treatment of cutaneous leishmaniasis. J Am Acad Dermatol, 31, 693-708.

Krauth-Siegel R. L., & Comini, M. A. (2008). Redox control in trypanosomatids, parasitic protozoa with trypanothione-based thiol metabolism. Biochim Biophys Acta.

Krauth-Siegel, R. L., Bauer, H., & Schirmer, R. H. (2005). Dithiol proteins as guardians of the intracellular redox milieu in parasites: old and new drug targets in trypanosomes and malaria-causing plasmodia. Angew Chem Int Ed Engl. 44, 690-715.

Laniado-Laborín, R., & Cabrales-Vargas, M. N. (2009). Amphotericin B: side effects and toxicity. Rev Iberoam Micol. 26, 223-227.

Lopes, E. G., Sevá, A. P., Ferreira, F., Nunes, C. M., Keid, L. B., Hiramoto, R. M, & Soares, R. M. (2018). Vaccine effectiveness and use of collar impregnated with insecticide for reducing incidence of Leishmania infection in dogs in an endemic region for visceral leishmaniasis in Brazil. Epidemiology and Infection.

Luna, E. J. De A., & Campos, S. R. de S. L. da C. (2020). O desenvolvimento de vacinas contra as doenças tropicais negligenciadas. Cad. Saúde Pública. 36.

Machado, A. E. (2000). Terapia fotodinâmica: princípios, potencial de aplicação e perspectivas. Quim Nova. 23, 237–243.

Marinho, F. D. A., Gonçalves, K. C. D. S., Oliveira, S. S. D., Oliveira, A.- C. D. S. C., Bellio, M., D'avila-Levy, C. M., Santos, A. L. S. D., & Branquinha, M. H. (2011). Miltefosine induces programmed cell death in Leishmania amazonensis promastigotes. Mem. Inst. Oswaldo Cruz. 106, 507-509.

Martin, V., Vouldoukis, I., Moreno, J., Mcgahie, D., Gueguen, S., Cuisinier, A. (2014). The protective immune response produced in dogs after primary vaccination with the LiESP / QA-21 vaccine (CaniLeish ® ) remains effective against an experimental challenge one year later. Veterinary Research. 45, 1–15.

Mcgwire, B. S., & Satoskar, A. R. (2014). Leishmaniasis: clinical syndromes and treatment. Q J Med. 107, .7–14.

Moafi, M., Rezvan, H., Sherkat, R., & Taleban, R. (2019). Leishmania vaccines entered in clinical trials: a review of literature. Int J Prev Med. 10, 95.

Murray, H. W. (2010). Treatment of visceral leishmaniasis in 2010: direction from Bihar state, India. Future Microbiol. 5, 1301–1303.

Nagle, A. S., Khare, S., Kumar, A. B., Supek, F., Buchynskyy, A., & Mathison, C. J. N., Molteni, V. (2014). Recent Developments in Drug Discovery for Leishmaniasis and Human African Trypanosomiasis. Chemical Reviews. 114, 11305.

Navasconi, T. R., Reis, V. N., Freitas, C. F., Pereira, P. C. S., Caetano, W., Hioka, N., Lonardoni, M. V. C., Aristides, S. M. A., & Silveira, T. G. V. (2017). Photodynamic Therapy With Bengal Rose and Derivatives Against Leishmania amazonensis. J Lasers Med Sci. 8, 46-50.

No, J. H. (2016). Visceral leishmaniasis: Revisiting current treatments and approaches for future discoveries. Acta Trop. 155, 113-123.

Nogueira, F. S., Moreira, M. A. B., Borja-Cabrera, G. P., Santos, F. N., Menz, I., Parra, L. E, & Luvizotto, M. C. R. (2005). Leishmune ® vaccine blocks the transmission of canine visceral leishmaniasis Absence of Leishmania parasites in blood, skin and lymph nodes of vaccinated exposed dogs. Vaccine. 23, 4805–4810.

Organização Pan-Americana Da Saúde (OPAS/OMS). (2018). Leishmanioses: Informe Epidemiológico das Américas. Organização Pan-Americana da Saúde.

Otranto, D., Dantas-Torres, F. (2013). The prevention of canine leishmaniasis and its impact on public health. Trends in Parasitology. 29, 339–345.

Paixão, V. G., & Pita. S. S. R. (2019). In silico identification and evaluation of new Trypanosoma cruzi trypanothione reductase (TcTR) inhibitors obtained from natural products database of the Bahia semi-arid region (NatProDB). Computational Biology and Chemistry. 79, 36–47.

Palatnik-De-Sousa, C. B., Silva-Antunes, I., Morgado, A. A, Menz, I., Palatnik, M., & Lavor, C. (2009). Decrease of the incidence of human and canine visceral leishmaniasis after dog vaccination with Leishmune ® in Brazilian endemic areas. Vaccine. 27, 3505–3512.

Palatnik-De-Sousa, C. B., & Nico, D. (2020). The delay in the licensing of protozoal vaccines: a compara - tive history. Front Immunol. v.11, p.204.

Paris, C., Loiseau, P. M., Bories, C., & Bréard, J. (2004). Miltefosine induces apoptosis-like death in Leishmania donovani promastigotes. Antimicrob. Agents Chemother. v.48, n.3, p.852-859.

Piccirillo, E., & Amaral, A. T. (2018). Busca virtual de compostos bioativos: conceitos e aplicações. Quím. Nova41, 662-677.

Pinto, J .G., Fontana, L. C., Oliveira, M. A., Kurachi, C., Raniero, L. J., & Ferreira-Strixino, J. (2016). In vitro evaluation of photodynamic therapy using curcumin on Leishmania major and Leishmania braziliensis. Lasers Med Sci. 31, 883–890.

Rashid, U., Sultana, R., Shaheen, N., Hassan, S.F., Yaqoob. F., Ahmad, M. J., Iftikhar, F., Sultana, N., Asghar, S., Yasinzai, M., Ansari, F. L., & Qureshi, N. A. (2016). Structure based medicinal chemistry-driven strategy to design substituted dihydropyrimidines as potential antileishmanial agents. Eur J Med Chem. 10, 230-44.

Reguera, R. M., Morán, M., Pérez-Pertejo, Y., García-Estrada, C., & Balaña-Fouce, R. (2016). Current status on prevention and treatment of canine leishmaniasis. Veterinary Parasitology. 227, 98–114.

Reguera, R.M., Elmahallawy, E.K., García-Estrada, C., Carbajo-Andrés, R., & Balaña-Fouce, R. (2019). DNA Topoisomerases of Leishmania Parasites, Druggable Targets for Drug Discovery. Curr Med Chem.26, 5900-5923.

Rijal, S., Ostyn, B., Uranw, S., Rai, K., Bhattarai, N. R., Dorlo, T. P. C., Beijnen, J. H., Vanaerschot, M., Decuypere, S., Dhakal, S. S., Lal Das, M., Karki, P., Singh, R., Boelaert, M., & Dujardin, J-C. (2013). Increasing Failure of Miltefosine in the Treatment of Kala-azar in Nepal and the Potential Role of Parasite Drug Resistance, Reinfection, or Noncompliance. Clinical Infectious Diseases, 56, 1530–1538.

Rother E.T. (2007). Revisão sistemática x revisão narrativa. Acta Paul Enferm, 20(2):v-vi. <http://www.scielo.Br/scielo.php?script=sci_arttext&pid+S0103-21002007000200001>.

Sampaio R. N. R., Takano G. H., Malacarne A. C., Pereira T. R., & de Magalhaes A. V. (2003). In vivo Terbinafine inefficacy on cutaneous leishmaniasis caused by Leishmania (Leishmania) amazonensis in C57BL/6 mice. Rev Soc Bras Med Trop.

Sereno, D., Holzmuller, P., & Lemestre, J. L. (2000). Efficacy of second line drugs on antimonylresistant amastigotes of Leishmania infantum. Acta Tropica. 7425.

Silva, K. L. O., Santos, D. P., Coelho, N. M. D., Silva, D. C., Okamoto, A. C., & Junior Gaetti-Jardim, E. (2013). Vacinas contra Leishmaniose: uma revisão. Archives of Health Investigation. 2, 18-28.

Silveira, F. T., Lainson, R., De Castro Gomes, C. M., Laurenti, M. D., & Corbett, C. E. P. (2009). Immunopathogenic competences of Leishmania (V.) braziliensis and L. (L.) amazonensis in american cutaneous leishmaniasis. Parasite Immunology, 31, 423 – 431.

Singh, N., Kumar, M., & Singh, R.K. (2012). Leishmaniasis: Current status of available drugs and new potential drug targets. Asian Pac. J. Trop. Med., 5, 485-4897.

Singh, N., Mishra, B. B., Bajpai, S., Singh, R. K., & Tiwari V. K. (2014). Natural product based leads to fight against leishmaniasis. Bioorg. Med. Chem. 22, 18-45.

Singh, O. P., Singh, B., Chakravarty, J., & Sundar, S. (2016). Current challenges in treatment options for visceral leishmaniasis in India: a public health perspective. Infect. Dis. Poverty.

Sun, C. H., Weng, S.C., Wu, J. H., Tung, S. Y., Su, L.H., Lin, M. H., & Lee, G. A. (2020). DNA topoisomerase IIIβ promotes cyst generation by inducing cyst wall protein gene expression in Giardia lamblia. Open Biol. 102.

Sundar, S., & Chatterjee, M. (2006). Visceral leishmaniasis current therapeutic modalities. The Indian Journal of Medical Research. v. 123, p. 345.

Sundar, S., & Murray, H. W. (2005). Availability of miltefosine for the treatment of kala-azar in India. Bulletin of the World Health Organization. 83, 394.

Sundar, S., & Olliaro, P. L. (2007). Miltefosine in the treatment of leishmaniasis: Clinical evidence for informed clinical risk management. Therapeutics and Clinical Risk Management. 3, 733.

Taylor, J. B., & Triggle, D. J. (2007). Comprehensive Medicinal Chemistry II, Elsevier.

Tiwari, N., Gedda, M. R., Tiwari, V. K., Singh, S. P., & Singh, R. K. (2018). Limitations of Current Therapeutic Options, Possible Drug Targets and Scope of Natural Products in Control of Leishmaniasis. Mini-Reviews in Medicinal Chemistry. v. 18, n. 1.

Ueno, N., & Wilson, M. E. (2012). Receptor-mediated phagocytosis of Leishmania: Implications for intracellular survival. Trends Parasitol. 28, 35–44.

Vasconcelos, J. M., Gomes, C. G., Sousa, A., Teixeira. A. B., & Lima, J. M. (2018). Leishmaniose tegumentar americana: perfil epidemiológico, diagnóstico e tratamento. RBAC. 50, 221-7.

Vianna, G. (1912). Tratamento da leishmaniose tegumentar por injeções intravenosas de tártaro emético. An 7º Congr Bras Med Cirurg. 4, 426–428.

Volpe, R. A. F. N., Navasconi, T. R., Reis V. N., Hioka, N., Becker, T. C. A., Lonardoni, M. V. C., Aristides, S. M. A., & Silveira, T. G. V. (2018). Terapia fotodinâmica para o tratamento da leishmaniose tegumentar americana: avaliação da associação de terapias em camundongos infectados experimentalmente com Leishmania (Leishmania) amazonensis. J Lasers Med Sci. 9, 274-282.

Vosgerau, D. S. A. R. & Romanowski, J. P. (2014). Estudos de revisão: implicações conceituais e metodológicas. Revista de Diálogo Educacional, (14)41, 165-189.

Vulpiani, M. P., Iannetti, L., Paganico, D., Iannino, F., & Ferri, N. (2011). Methods of control of the Leishmania infantum dog reservoir: State of the art. Veterinary Medicine.

Zulfiqar, B., Shelper, T. B., & Avery, V. M. (2017). Leishmaniasis drug discovery: recente progress and challenges in assay development. Drug Discov Today. p.4.

Published

22/06/2021

How to Cite

SANTIAGO, A. S.; PITA, S. S. da R.; GUIMARÃES, E. T. Leishmaniasis treatment, current therapy limitations and new alternative requirements: A narrative review. Research, Society and Development, [S. l.], v. 10, n. 7, p. e29510716543, 2021. DOI: 10.33448/rsd-v10i7.16543. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/16543. Acesso em: 22 nov. 2024.

Issue

Section

Review Article