Organic waste and biochars for soil conditioner purposes

Authors

DOI:

https://doi.org/10.33448/rsd-v10i7.16660

Keywords:

Biosolid; Sugarcane bagasse; Pyrolysis; Characterization; Soil properties.

Abstract

The objective of the present study was to characterize raw materials and biochars produced under laboratory conditions, in addition to providing information regarding the feasibility of using biochar in the soil. Thus, in first stage, the biochar was produced from the dry sample of biosolids (BP) and sugarcane bagasse (BCP), by means of slow pyrolysis at a temperature of 350°C for 30 minutes. In a second stage, the characterization of the raw materials and their respective biochars was carried out. A design with five replications was used, and the treatments consisted of: pure biosolid; pure sugarcane bagasse; biosolid biochar (BB); sugarcane bagasse biochar (BBC). Where the assessment of residues was through the analysis of: mass yield, immediate, hydrogen potential, cátion exchange capacity, nutriente contente, X-ray fluorescence spectrometry, bromatology, particle density and size. The data obtained were submitted to analysis of variance (ANOVA) by the SISVAR program. To compare means, the Tukey testa t 5% probability (p<0,05) was used. It is concluded that both the raw materials and the biochars, produced by slow pyrolysis at 350°C, presented characteristics favorable for agricultutural use, mainly in terms of fertility.

References

Agrafioti, E. et al. (2013). Biochar production by sewage sludge pyrolysis. Journal of Analytical and Applied Pyrolysis, 101:72-78.

Alamino, R. C. J. et al. (2007). Biodisponibilidade de Cd em Latossolo Acrescido de Lodo de Esgoto. Anuário do Instituto de Geociências, 30.

Alokika. et al. (2021). Cellulosic and hemicellulosic fractions of sugarcane bagasse: Potential, challenges and future perspective. International Journal of Biological Macromolecules, v. 169, pp 564-582.

Alterthum, F. (1998). Produção de etanol utilizando bactéria recombinante. Revista Pesquisa Fapesp.

ASTM. (2010). ASTM D2862-10: Particle size distribution of granular activated carbono. West Conshohocken: ASTM International. American Society for Testing and Materials – ASTM. 6 p. Disponível em: http://www.astm.org

Amonette, J. E. & Joseph, S. (2009) Characteristics of biochar: Microchemical Properties. In: Lehmann, J. & Joseph, S., Eds. Biochar for Environmental Management: Science and Technology, Earthscan, London, 33-52.

Arshadi, M., Amiri, M. J. & Mousavi, S. (2014) Kinetic, equilibrium and thermodynamic investigation of Ni (II), Cd(II), Cu(II) and Co(II) adsorption on barley straw ash. Water Resour. Indus., 6, pp.1-17.

Barros, I. T. et al. (2011). Avaliação agronômica de biossólido tratados por diferentes métodos químicos para aplicação na cultura do milho. Rev. Bras. Engenharia Agrícola e Ambiental, pp. 630-638.

Brady, N. C. & Weil, R. R. (2013) Elementos da natureza e propriedades dos solos. Tradução técnica: Iago Fernando Lepsch. 3 ed. Porto Alegre: Bookman.

Brasil. (1986). NBR 8112 – Carvão Vegetal: Análise Imediata: Método de Ensaio. Associação Brasileira de Normas Técnicas – ABNT.

Brasil. (2007). Instrução Normativa SDA Nº 17, De 21 de Maio. Ministério da Agricultura, Pecuária e Abastecimento – MAPA.

Bleuler, M. et al. (2020). Pyrolysis of dry toilet substrate as a means of nutrient recycling in agricultural systems: Potential risks and benefits. Waste and Biomass Valorization.

Caires, E. F. (2000). Manejo da fertilidade do solo no sistema plantio direto: Experiências no estado do Paraná. In: Reunião Brasileira de Fertilidade do Solo e Nutrição de Plantas. Fertbio, Santa Maria.

Cantrell, K. B. et al. (2012). Impacto of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresource Technology, v. 107, pp. 419-428.

Canqui, H. B. (2017). Biochar and soil physical properties. Soil Science Society of America Journal, v. 81, pp. 687-711.

Cao, X. & Harris, W. (2010). Properties of dairy-manure-derived biochar pertinente to its potential use in remediation. Bioresource Technology, v. 101, pp. 5222-5228.

Carabetta Júnior, V. & Brito, C. A. F. (2011). Bases introdutórias de iniciação científica em saúde na escolha do método de pesquisa. Revista Brasileira de Ciências da Saúde, n° 29.

Chen, X. et al. (2021). Biochar as tool to reduce environmental impacts of nitrogen loss in water-saving irrigation paddy field. Journal of Cleaner Production, v. 290.

CONAB. (2021). Acompanhamento da safra brasileira: Cana-de-açúcar safra 2021/2022 1° levantamento. Companhia Nacional de Abastecimento. Disponível em: https://www.conab.gov.br/info-agro/safras/cana.

Conz, R. F. et al. (2017). Effect of pirolysis temperature and feedstock type on agricultural properties and stability of biochar. Agricultural Sciences, 8, 914-933.

Domingues, R. R. et al. (2017). Properties of biochar derived from wood and high-nutrient biomasses with the aim of agronomic and environmental benefits. Plos One, 12(5).

Downie, A., Croscky, A. & Munroe, P. (2009). Physical properties of biochar. In: Lehmann, J. & Joseph, S., Ed. Biochar for environmental management: Science and Technology. London: Earthscan, pp.13-29.

EMBRAPA. (1997). Manual de métodos de análise de solo/Centro Nacional de Pesquisa de Solos. 2. ed. rev. atual. 212p. Rio de Janeiro: Empresa Brasileira de Pesquisa Agropecuária.

Enders, A. et al. (2012). Characterization of biochar to evaluate recalcitrance and agronomic performance. Bioressource Technology, v. 114, pp. 644-653.

Joseph, S. D. et al. (2010). Na investigation into the reactions of biochar in soil. Australian Journal of Soil Research, Victoria, v. 48, pp. 501-515.

Hossain, M. K. et al. (2011). Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar. Journal of Environmental Management, 92: 223-228.

Hossain, M. K., Strezov, V. & Nelson, P. F. (2009). Thermal characterisation of the products of wastewater sludge pyrolysis. Journal of Analytical and Applied Pyrolysis, 85: 442-446.

Kameyama, K. et al. (2016). Effects of biochar produced from sugarcane bagasse at different pyrolysis temperatures on water retention of a calcaric dark red soil. Soil Science, 181(1), 20–28.

Kim, K. H. et al. (2012). Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine (Pinus rígida). Bioresource Technology, v. 118, pp. 158-162.

Lee, Y. et al. (2013). Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500ºC. Bioresource Technology, v.148, pp.196-201.

Lehmann, J. et al. (2011). Biochar effects on soil biota-a review. Soil Biology and Biochemistry, 43, 1812-1836.

Lehmann, J. & Joseph, S. (2009). Biochar for environmental management: An introduction. In: Lehmann, J. & Joseph, S. (Eds.) Biochar for Environmental Management: Science and Technology. Earthscan, London, pp. 1-12.

Lehmann, J. & Joseph, S. (2015). Biochar for environmental management: Science, technology and implementation. Earthscan.

Lehmann, J. & Stephen, J. M. (2009). Biochar for environmental management: Science and technology. Forest Policy and Economics, Earthscan, 1-12.

Li, D. C. & Jiang, H. (2017). The thermochemical conversion of non-lignocellulosic biomass to form biochar: a review on characterizations and mechanism elucidation. Bioresour. Technol., 246, pp. 57-68.

Lorenz, K. & Lal, R. (2014). Biochar application to soil for climate change mitigation by soil organic carbono sequestration. Journal of Plant Nutrition and Soil Science, v. 177, n.5, pp. 651-670.

Malavolta, E., Vitti, G. C. & Oliveira, S. A. (1997) de. Avaliação do estado nutricional das plantas: Princípios e aplicações. Piracicaba: Potafos, 308p.

Masek, O. et al. (2013). Influence of production conditions on the yield and environmental stability of biochar. Fuel, 103: 151-155.

Matheri, A. N. et al. (2020). Influence of Pyrolyzed sludge use as na adsorbent in removal of selected trace metals from wastewater treatment. Case Studies in Chemical and Environmental Engineering, v. 2, 100018.

Moreira, F. M. S. & Siqueira, J. O. (2006). Microbiologia e bioquímica do solo. 2. Ed. Lavras: Universidade Federal de Lavras.

Nobile, F. O. (2009). Uso de resíduos na agricultura. Rev. Uniara, v.12, n.2.

Novotny, E. H. et al. (2015). Biochar: Pyrogenic carbono for agricultural use - a critical review. Revista Brasileira de Ciência do Solo, v. 39, n. 2, pp. 321-344.

Omondi, M. O. et al. (2016). Quantification of biochar effects on soil hydrological properties using meta‐analysis of literature data. Geoderma 274: 28– 34.

Pandey, A. et al. (2000). Biotechnological potential of agro-industrial residues. I: sugarcane bagasse. Bioresource Technology, v. 74, pp. 69-80.

Pandolfo, A. G., Amini-Amoli, M. & Killingley, J. S. (1994). Activated carbons prepared from shells of different coconut varieties. Carbon, vol 32, pp.1015–1019.

Pedroza, J. P. et al. (2005). Doses crescentes de biossólido e seus efeitos na produção e componentes do algodoeiro herbáceo. Rev.de Biologia e Ciências da Terra, vol. 5, n. 2.

Pereira, T. V. & Seye, O. (2014). Caracterização física de biomassa local. Enepex, Dourados: UFGD.

Petter, F. A. & Madari, B. E. (2012). Biochar: Agronomic and environmental potential in Brazilian savannah soils. Revista Brasileira de Engenharia Agricola e Ambiental, v.16, n. 7, p. 761-768.

Pituello, C. et al. (2015). Characterization of chemical-physical, structural and morphological properties of biochars from biowastes produced at different temperatures. J. Soil. Sediment 15(4), 792-804.

Pradhan, S. et al. (2020). Biochar from vegetable wastes: agro‑environmental characterization. Biochar (2), pp. 439-453.

Rajkovich, S. et al. (2012). Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biology and Fertility of Soils, pp. 271-284.

Rehrah, D. et al. (2014). Production and characterization of biochars from agricultural by-products for use in soil quality enhancement. Journal of Analytical and Applied Pyrolysis, n. 108, p. 301–309.

Rutherford, D. W. et al. (2012). Effect of formation conditions on biochar: composition and structural properties of celulose, lignina and pine biochars. Biomass and Bioenergy, v. 46, pp. 693-701.

Santos, M. L. et al. (2011). Estudos das condições de estocagem do bagaço de cana-de-açúcar por análise térmica. Rev. Química Nova, vol. 34, n.3, 507-511.

Silva, D. J. & Queiroz, A. C. (2006). Análise de alimentos: métodos químicos e biológicos. Viçosa: UFV, 235p.

Singh, B., Singh, B. P. & Cowie, A. L. (2010). Characterisation and evaluation of biochars for their application as a soil amendment. Australian Journal of Soil Research, Victoria, v. 48, pp. 516-525.

Schmitt, C. C. et al. (2020). From agriculture residue to upgraded product: The thermochemical conversion of sugarcane bagasse for fuel and chemical products. Fuel Processing Technology, v.197.

Sohi, S. P. (2012). Carbon storage with benefits. Science, v. 338, p. 1034-1035.

Souza, C. De S. et al. (2021). Induced changes of pyrolysis temperature on the physicochemical traits of sewage sludge ando n the potential ecological risks. Scientific Reports, 11.

Souza, T. T., Lima, A. B. & Teixeira, W. G. (2009). O aumento da capacidade de troca de cátions (CTC) do solo através da aplicação de carvão vegetal em um latossolo amarelo na Amazônia Central. 61° Reunião Anual da SBPC.

Tomé Jr, J. B. (1997). Manual para interpretação de análise de solo. Guaíba: Agropecuária.

Toscan, A. et al. (2017). High-pressure carbon dioxidewater pre-treatment of sugarcane bagasse and elephant grass: assessment of the effect of biomass composition on process efficiency. Bioresource Technology, v.224, pp.639-647.

Wastowski, A. D. et al. (2010). Caracterização dos níveis de elementos químicos em solo, submetido a diferentes sistemas de uso e manejo, utilizando espectrometria de fluorescência de raios-x por energia dispersiva. Rev. Química Nova, v. 33, n.7, 1449-1452.

Xing, J., Xu, G. & Li, G. (2021). Comparison of pyrolysis process, various fractions and potential soil applications between sewage sludge-based biochars and lignocellulose-based biochars. Ecotoxicology and Environmental Safety, v.208.

Xue, Y. et al. (2019). Pyrolysis of sewage sludge by electromagnetic induction: Biochar properties and application in adsorption removal of Pb(II), Cd(II) from aqueous solution. Waste Manag., 89, pp. 48-56.

Yuan, H. et al. (2015). Influence of pyrolysis temperature on physical and chemical properties of biochar made from sewage sludge. Journal of Analytical and Applied Pyrolysis, v. 112, pp. 284-289.

Yuan, H. et al. (2013). Influence of temperature on product distribution and biochar properties by municipal sludge pyrolysis. Journal of Material Cycles and Waste Management, 15, 357-361.

Zelaya, K. P. S. et al. (2019). Biochar in sugar beet production and nutrition. Ciência Rural, v. 49.

Zhang, H. et al. (2017). Efect of feedstock and pyrolysis temperature on properties of biochar governing end use efcacy. Biomass Bioenerg, 105:136–146.

Zhao, L. et al. (2013). Hetergeneity of biochar properties as a function od feedstock sources and production temperatures. Journal of Hazardous Materials, Amsterdam, v.256-257, pp. 1-9.

Published

11/06/2021

How to Cite

SOUZA, J. G. de; SANTOS, B. C. S. dos; COSTA, M. E. da S.; SANTOS, M. K. dos; SANTOS, C. H. dos; MAZZUCHELLI, R. de C. L. .; ALVES, M. R. Organic waste and biochars for soil conditioner purposes . Research, Society and Development, [S. l.], v. 10, n. 7, p. e1510716660, 2021. DOI: 10.33448/rsd-v10i7.16660. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/16660. Acesso em: 2 jan. 2025.

Issue

Section

Agrarian and Biological Sciences