In vitro antioxidant activity of Lippia origanoides H.B.K

Authors

DOI:

https://doi.org/10.33448/rsd-v10i8.16716

Keywords:

Lippia origanoides; Essential oil; Oxidative stress; Antioxidant activity.

Abstract

Oxidative stress is a constant threat to the body. As a result, a series of antioxidant defenses, in addition to cell repair systems, have evolved with the aim of protecting against destruction and damage caused by free radicals. Plants produce a huge variety of antioxidants that tend to act against cell damage by removing reactive oxygen species and reactive nitrogen species. Lippia origanoides Humboldt, Bonpland and Kunth, Verbenaceae family, is an aromatic shrub known as “Rosemary-do-campo”, being responsible for several pharmacological and biological activities, including antioxidant protection. This work aimed to analyze the chemical composition of the essential oil of L.origanoides HBK (OELO) and evaluate its antioxidant activity in vitro. Therefore, the in vitro antioxidant potential was evaluated by the reducing potential, 2,2diphenyl-1-picrylhydrazyl (DPPH), lipid peroxidation inhibition (TBARS), hydroxyl radical and nitric oxide methods, at concentrations of 100, 300 and 900 µM. All concentrations showed antioxidant activity. The reducing potential, reductions in TBARS production and inhibition of the DPPH• radical were superior to the positive control, ascorbic acid, showing a high presence of antioxidant substances. These results suggest that this species is promising for the production of herbal medicine where the antioxidant activity is of desired action.

Author Biography

Francisco das Chagas Araújo Sousa, Universidade Estadual do Piauí

Professor Adjunto do Centro de Ciências da Saúde da Universidade Estadual do Piaui

References

Badke, M. R., Budó, M. L. D., Alvim, N. A. T., Zanetti, G. D., & Heisler, E. V. (2012). Popular knowledge and practices regarding healthcare using medicinal plants. Tex Cont Nursing, 21(2), 363-370.

Baser, K. H. C., & Demirci, F. (2007). Chemistry of Essential Oils. In: R. G. Berger (Coord.). Flavours and Fragrances: Chemistry, Bioprospecting and Sustainability (pp. 43-86). Heidelberg: Springer.

Faustino, T. T., Almeida, R. B., & Andreatini, R. (2010). Plantas medicinais no tratamento do transtorno de ansiedade generalizada: uma revisão dos estudos clínicos controlados. Revista Brasileira de Psiquiatria, 32(4), 429-436.

Fitó, M., Torre, R., & Covas, M. I. (2007). Olive oil and oxidative stress. Molecular Nutrition & Food Research, 51(10), 1215-1224.

Goulart, M. O. F., Oliveira, A. C., & Valentim, I. A. (2009). Fontes vegetais naturais de antioxidantes. Química Nova, 32(3), 689-702.

Gülçin, I., Elmastas, M., & Aboul-Enein, H.Y. (2007). Determination of antioxidant and radical scavenging activity of basil (Ocimum basilicum L. family Lamiaceae) assayed by different methodologies. Phytotherapy Research, 21(4), 354-61.

Huang, D., Ou, B., & Prior, R. L. (2005). The chemistry behind antioxidant capacity assays. Journal of agricultural and food chemistry, 53(6), 1841 -1856.

Lim, Y.Y., Lim, T.T., & Tee, J.J. (2007). Antioxidant properties of several tropical fruits: a comparative study. Food Chemistry, 103(2), 1003 -1008.

Molyneux, P. (2004). The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin Journal of Science and Technology, 26(2)211 -9.

Moon, J., Shibamoto, T. (2009). Antioxidant Assays for Plant and Food Components. Journal of Agricultural and Food Chemistry. 57(5), 1655–1666.

Payá, M.; Halliwell, B.; Hoult, J. R. S. (1992). Interactions of a series of coumarins with reactive oxygen species: scavenging of superoxide, hypochlorous acid and hydroxyl radicals. Biochemical pharmacology, 44(2), 205-214.

Ramos, L. A., Cavalheiro, C. C. S., Cavalheiro, E. T. G. (2006). Determinação de nitrito em águas utilizando extrato de flores. Química Nova, 29(5), 1114.

Ruberto, G., & Baratta, M. (2000). Antioxidant activity of selected essential oil components in two lipid model systems. Food Chemistry, 69, 167–174.

Santos, F. J. B., Lopes, J. A. D., Citó, A. M. G. L., Oliveira, E. H., Lima, S. G., & Reis, F. A. M. (2004). Composition and biological activity of essential oils from Lippia origanoides H.B.K. The Journal of Essential Oil Research, 16, 504-506.

Singhal, M., Paul, A., & Singh, H. P. (2013). Synthesis and reducing power assay of methyl semicarbazone derivatives. Journal of Saudi Chemical Society, 18, 121-127.

Siviero, A., Delunardo, T. A., Haverroth, M., Oliveira, L. C., & Mendonça, A. M. S. (2012). Plantas medicinais em quintais urbanos de Rio Branco, Acre. Revista Brasileira de Plantas Medicinais, 14(4), 598-610.

Sykes, P. (1991). A Guidebook to mechanism in organic chemistry, 6 ed. Londres: Longman Scientific & Technical.

Stashenko, E. E., Martínez, J. R., Ruíz, C. A., Arias, G., Durán. C., Salgar, W., & Cala, M. (2010). Lippia origanoides chemotype differentiation based on essential oil GC-MS and principal component analysis. Journal of separation Science, 33,93-103.

Zin, Z.M., Abdul-Hamid, A., & Osman, A. (2002). Antioxidative activity of extracts from Mengkudu (Morindacitrifolia L.) root, fruit and leaf. Food Chemistry, 78, 227–231.

Published

18/07/2021

How to Cite

SOUSA, F. das C. A. .; SANTOS, I. G. dos; SOUSA, M. W. de; SILVA, E. G. da; SANTOS, B. N. G. dos; MEDEIROS, M. das G. F. de; BRITO, M. dos R. M. de; SILVA, W. C. da .; SIQUEIRA, H. D. S. .; SIQUEIRA, F. F. F. S. In vitro antioxidant activity of Lippia origanoides H.B.K. Research, Society and Development, [S. l.], v. 10, n. 8, p. e2810816716, 2021. DOI: 10.33448/rsd-v10i8.16716. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/16716. Acesso em: 15 jan. 2025.

Issue

Section

Health Sciences