Physiotherapeutic resources used in Post-COVID 19: A literature review
DOI:
https://doi.org/10.33448/rsd-v10i7.16785Keywords:
Physiotherapy; Rehabilitation; COVID-19.Abstract
Most post-COVID-19 patients need physical therapy rehabilitation during and shortly after hospitalization according to the World Health Organization. And the physical therapy rehabilitation program has an emphasis and greater importance on the cardiorespiratory system. The aim of this article is to demonstrate how physical therapy resources can help improve these Post-Covid 19 patients, regardless of their status, whether mild, moderate or severe, based on research carried out on digital platforms: Scielo, Pubmed, Associações International with the descriptors coronavirus, pathophysiology and treatment, during a period of 6 months. Based on the researches carried out, it can be concluded that physical therapy rehabilitation through resources such as: thresold (linear pressure load device), RPPI (intermittent positive pressure breathing), manual resuscitator and resistance exercises can improve cardiorespiratory capacity and promote greater tolerance to the reconditioning of Post-Covid 19 patients, consequently improving their quality of life.
References
Ahmed, S. F., Quadeer, A. A., & McKay, M. R. (2020). Preliminary identification of potential vaccine targets for the COVID-19 coronavirus (SARS-CoV-2) based on SARS-CoV immunological studies. Viruses 12 (3), 254. doi: 10.3390/ v12030254
American Heart Association (AHA). (2005). Part 6: CPR Techniques and Devices. Circulation 2005;112:IV-47-50.
Britto, R. R.; brant, T. C. & parreira, V. F. (2019). Recursos Manuais e Instrumentais em Fisioterapia Respiratória. Barueri, SP: Manole, 2009. Cad. Bras. Ter. Ocup., São Carlos, v. 27, n. 1, p. 27-34, 2019.
Carvalho, L.C. & Pessoa, S.R. (2009). Epidemiologia da DPOC nos presentes aspectos nacionais. Rev. Pulmão Rj. Autorizações temáticas 2009. Vol. 1
Cascella, M., Rajnik, M., Cuomo, A., Dulebohn, S. C., and Di Napoli, R. (2020). Features, evaluation and treatment coronavirus (COVID-19) (StatPearls: StatPearls Publishing)
Chen, Y., Liu, Q., & Guo, D. (2020). Emerging coronaviruses: genome structure, replication, and pathogenesis. J. Med. Virol. 92 (4), 418–423. doi: 10.1002/ jmv.25681
D’Amico, F., Baumgart, D. C., Danese, S., & Peyrin-Biroulet, L. (2020). Diarrhea during COVID-19 infection: pathogenesis, epidemiology, prevention and management. Clin. Gastroenterol. Hepatol. 18, 1663–1672. doi: 10.1016/ j.cgh.2020.04.001
Docea, A. O., Tsatsakis, A., Albulescu, D., Cristea, O., Zlatian, O., Vinceti, M., et al. (2020). A new threat from an old enemy: Re emergence of coronavirus. Int. J. Mol. Med. 45 (6), 1631–1643. doi: 10.3892/ijmm.2020.4555
Farias I S R, & Rodrigues T S. (2009). Exercício Resistido - Na saúde, na doença, no envelhecimento 2009.
Fung, S. Y., Yuen, K. S., Ye, Z. W., Chan, C. P., & Jin, D. Y. (2020). A tug-of-war between severe acute respiratory syndrome coronavirus 2 and host antiviral defence: lessons from other pathogenic viruses. Emerg. Microbes Infect. 9 (1), 558–570. doi: 10.1080/22221751.2020.1736644
Gava, Marcus V.; Picanço & Patrícia S. A. (2006). Fisioterapia Pneumológica. São Paulo: Manole, 2007.
Giamarellos-Bourboulis, E. J., Netea, M. G., Rovina, N., Akinosoglou, K., Antoniadou, A., Antonakos, N., et al. (2020). Complex immune dysregulation in COVID-19 patients with severe respiratory failure. Cell Host Microbe. 16, 992–1000. doi: 10.1016/j.chom.2020.04.009
Lai, C. C., Shih, T. P., Ko, W. C., Tang, H. J., & Hsueh, P. R. (2020). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and corona virus disease2019 (COVID-19): the epidemic and the challenges. Int. J. Antimicrob. Agents, 105924. doi: 10.1016/j.ijantimicag.2020.105924
Liang, J., Mao, G., Yin, X., Ma, L., Liu, L., Bai, Y., et al. (2020). Identi fi cation and quanti fi cation of bacterial genomes carrying antibiotic resistance genes and virulence factor genes for aquatic microbiological risk assessment.
Machado M G R. (2008). Reabilitacao Pulmonar. In: Bases da Fisioterapia Respiratoria – Terapia Intensiva e Reabilitação. 1ª edição. Editora Guanabara Koogan, 2008.
Malik, Y. S., Sircar, S., Bhat, S., Vinodhkumar, O. R., Tiwari, R., Sah, R., et al. (2020). Emerging Coronavirus Disease (COVID-19), a pandemic public health emergency with animal linkages: Current status update. Preprints 2020030343. doi: 10.20944/preprints202003.0343.v1
Mohd, H. A., Al-Tawfiq, J. A., & Memish, Z. A. (2016). Middle East respiratory syndrome coronavirus (MERS-CoV) origin and animal reservoir. Virol. J. 13 (1), 87. doi: 10.1186/s12985-016-0544-0
Nasi, A., McArdle, S., Gaudernack, G., Westman, G., Melief, C., Arens, R., et al. (2020). Proteasome and reactive oxygen species dysfunction as risk factors for SARS-CoV infection; consider N-acetylcystein as therapeutic intervention. Toxicol. Rep. 7, 768–771.
Pereira A.S. et al. (2018). Metodologia da pesquisa científica. [e-book]. Santa Maria. Ed. UAB/NTE/UFSM.
Perlman, S. (2020). Another decade, another coronavirus. N. Engl. J. Med. 382, 760–762. doi: 10.1056/NEJMe2001126
Prompetchara, E., Ketloy, C., & Palaga, T. (2020). Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic. Asian Pac. J. Allergy Immunol. 38 (1), 1–9.
Riou, J., & Althaus, C. L. (2020). Pattern of early human-to-human transmission of Wuhan 2019 novel coronaviru-nCoV), December 2019 to January 2020. Eurosurveillance 25 (4), 2000058. doi: 10.2807/1560-7917.ES.2020.25.4.2000058
Silhol, F., Sarlon, G., Deharo, J. C., & Vaïsse, B. (2020). Downregulation of ACE2 induces overstimulation of the renin-angiotensin system in COVID-19: should we block the renin-angiotensin system? Hypertension Res. 1–3. doi: 10.1038/ s41440-020-0476-3
Silva, R. M. V.; & Sousa, A. V. C. (2020). Fase crônica da COVID-19: desafios do fisioterapeuta diante das disfunções musculoesqueléticas. Fisioter. Mov., Curitiba, v. 33, 2020
Wernery, U., Lau, S. K., & Woo, P. C. (2017). Middle East respiratory syndrome (MERS) coronavirus and dromedaries. Vet. J. 220, 75–79. doi: 10.1016/ j.tvjl.2016.12.020
Wu, C., Liu, Y., Yang, Y., Zhang, P., Zhong, W., Wang, Y., et al. (2020b). Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharmaceutica Sinica B. doi: 10.1016/ j.apsb.2020.02.008
Zhang, H., Penninger, J. M., Li, Y., Zhong, N., & Slutsky, A. S. (2020). Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med. 1–5. doi: 10.1007/s00134-020-05985-9
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Bruna Pereira Nagamine; Lécia Kristine Lourenço; Camila Teixeira de Oliveira Penna Chaves
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.