Influence of drying on bioactive compounds and antioxidant activity of fruits of guabiju (Myrcianthes pungens)

Authors

DOI:

https://doi.org/10.33448/rsd-v10i8.17024

Keywords:

Phenolic Compounds; Flavonoids; Anthocyanins; Antioxidant activity; Centesimal composition.

Abstract

The objective of this work was to evaluate the influence of temperature on the content of bioactive compounds of fruits of guabiju (Myrcianthes pungens (O. Berg) D. Legrand). The peel, pulp and seed of fresh guabiju were analyzed in relation to physical-chemical composition, metals, color, phenolic compounds, flavonoids, anthocyanins, vitamin C and antioxidant activity. On the dehydrated samples at temperature of 60 °C, where also determined the moisture and water activity. The fractions of the fruit showed high amounts of metals. After drying, moisture of 1.3, 1.0 and 0.9% were observed for peel, pulp and seed and water activity of 0.44 to 0.54. All the samples darkened, with less variation in the dehydrated peel (∆E 9.2). The samples showed high values of bioactive compounds, and in the fresh peel were observed higher levels of phenolic compounds (8459.8 mg EGA/100g dry extract), anthocyanins (152.0 mg/100 dry extract) and vitamin C (222.9 mg/100g) and on the dehydrated seed higher value of flavonoids (7480.7 mg EQ/100g dry extract). There was 86.3% degradation of anthocyanins in the dehydrated peel. The best values of antioxidant activities were obtained for the dehydrated peel (IC50 1.37 mg/mL), seed (IC50 1.49 mg/mL) and in the fresh peel (IC50 1.41 mg/mL).

References

Alves, C. C. O., Resende, J. V. de, Cruvinel, R. S. R., & Prado, M. E. T. (2008). Estabilidade da microestrutura e do teor de carotenóides de pós obtidos da polpa de pequi (Caryocar brasiliense Camb.) liofilizada. Ciência e Tecnologia de Alimentos, 28(4), 830–839.

Amaral, V. A., Alves, T. F. R., Souza, J. F., Batain, F., Crescencio, K. M. M., Soeiro, V. S., Barros, C. T., & Chaud, M. V. (2021). Phenolic com-pounds from Psidium guajava (Linn.) leaves: Effect of the extraction-assisted method upon total phenolics content and antioxidant activity. Biointerface Research in Applied Chemistry, 11(2), 9346–9357.

Andrade, J. M. M., Aboy, A. L., Apel, M. A., Raseira, M. C. B., Pereira, J. F. M., & Henriques, A. T. (2011). Phenolic composition in different genotypes of Guabiju fruits (Myrcianthes pungens) and their potential as antioxidant and antichemotactic agents. Journal of Food Science, 76(8).

Apáez Barrios, P., Granados, M. D. C. R., Santos, M. E. P., & Montaño, Y. A. R. (2018). Effect of foliar copper application on yield and antho-cyanin concentration in Hibiscus sabdariffa calyces. Revista de La Facultad de Ciencias Agrarias, 50(2), 65–75.

Araujo, M. E. V., Barbosa, E. G., Oliveira, A. C. L., Milagres, R. S., Pinto, F. A. C., & Corrêa, P. C. (2020). Physical properties of yellow passion fruit seeds (Passiflora edulis) during the drying process. Scientia Horticulturae, 261(September), 109032.

Arend, G. D., Adorno, W. T., Rezzadori, K., Di Luccio, M., Chaves, V. C., Reginatto, F. H., & Petrus, J. C. C. (2017). Concentration of phenolic compounds from strawberry (Fragaria X ananassa Duch) juice by nanofiltration membrane. Journal of Food Engineering, 201, 36–41.

Assumpção, M. M., Dalmaso, M., & Bragança, G. C. M. (2017). Composição nutricional e atividade antioxidante de edicarpo, mesocarpo e se-mentes de guabiju (Myrcianthes Pungens(O. Berg) D legrand) provenientes do bioma pampa. Revista Da Mostra de Trabalhos de Conclusão de Cursos Congrega, 1(1), 270–285.

Banerjee, J., Singh, R., Vijayaraghavan, R., MacFarlane, D., Patti, A. F., & Arora, A. (2017). Bioactives from fruit processing wastes: Green ap-proaches to valuable chemicals. Food Chemistry, 225, 10–22.

Cardoso, L. M., Leite, J. P. V., & Peluzio, M. C. G. (2011). Efeitos biológicos das antocianinas no processo aterosclerótico. Revista Colombiana de Ciencias Químico - Farmacéuticas, 40(1), 116–138.

Casarin, F., Mendes, C. E., Lopes, T. J., & Moura, N. F. (2016). Planejamento experimental do processo de secagem da amora-preta (Rubus sp.) para a produção de farinha enriquecida com compostos bioativos. Brazilian Journal of Food Technology, 19.

Castuera-Oliveira, L., Oliveira-Filho, A. T., & Eisenlohr, P. V. (2020). Emerging hotspots of tree richness in Brazil. Acta Botanica Brasilica, 34(1), 117–134.

Celant, V. M., Braga, G. C., Vorpagel, J. A., & Salibe, A. B. (2016). Composição fenólica e atividade antioxidante dos extratos aquoso e etanólico de amora-preta. Revista Brasileira de Fruticultura, 38(2), 1–8.

Chrystal, P., Pereira, A. C., Fernandes, C. C., Souza, J. M., Martins, C. H. G., Potenza, J., Crotti, A. E. M., & Miranda, M. L. D. (2020). Essential oil from Psidium cattleianum sabine (Myrtaceae) fresh leaves: Chemical characterization and in vitro antibacterial activity against endodontic pathogens. Brazilian Archives of Biology and Technology, 63.

Dalla Nora, C., Dal-Ri Müller, C., Bona, G. S., Rios, A. O., Hertz, P. F., Jablonski, A., Jong, E. V., & Flôres, S. H. (2014). Effect of processing on the stability of bioactive compounds from red 4 guava (Psidium cattleyanum Sabine) and guabiju (Myrcianthes pungens). Journal of Food Com-position and Analysis, 34(1), 18–25.

Dalla Nora, C., Danelli, D., Souza, L. F., Rios, A. O., de Jong, E. V., & Flôres, S. H. (2014). Protective effect of guabiju (Myrcianthes pungens (O. Berg) D. Legrand) and red guava (Psidium cattleyanum Sabine) against cisplatin-induced hypercholesterolemia in rats. Brazilian Journal of Pharmaceutical Sciences, 50(3), 483–492.

Fang, J. (2015). Classification of fruits based on anthocyanin types and relevance to their health effects. Nutrition, 31(11–12), 1301–1306.

Faria, G. S., Jardim, F. B. B., Silva, A. C., Costa, L. L., & Abdalla, D. R. (2016). Caracterização química da casca de jabuticaba (Myrciaria jabuti-caba) liofilizada e sua aplicação em leite fermentado potencialmente simbiótico. Jornal de CiÊncias Biomédicas e Saúde, 2(1), 90–97.

Fetter, M. R., Vizzotto, M., Dutra Corbelini, D., & Nogueira Gonzalez, T. (2010). Propriedades funcionais de araçá-amarelo, araçá-vermelho (Psidium cattleyanum Sabine) e araçá-pera (P. acutangulum D.C.) cultivados em Pelotas/RS. Brazilian Journal of Food Technology, 13, 92–95.

Garrido, G., Ortiz, M., & Pozo, P. (2013). Fenoles y flavonoides totales y actividad antioxidante de extractos de hojas de Lampaya medicinalis F. Phil. Journal of Pharmacy and Pharmacognosy Research, 1(1), 30–38.

Gatto, L. J., Fabri, N. T., Souza, A. M., Fonseca, N. S. T., Furusho, A. D. S., Miguel, O. G., Dias, J. de F. G., Zanin, S. M. W., & Miguel, M. D. (2020). Chemical composition, phytotoxic potential, biological activities and antioxidant properties of Myrcia hatschbachii d. Legrand essential oil. Brazilian Journal of Pharmaceutical Sciences, 56, 1–9.

Goldmeyer, B., Penna, N. G., Melo, Â., & Rosa, C. S. (2014). Características físico-químicas e propriedades funcionais tecnológicas do bagaçode mirtilo fermentado e suas farinhas. Revista Brasileira de Fruticultura, 36(4), 980–987.

Guiné, R. P. F., Correia, P. M. R., Ferrão, A. C., Gonçalves, F., Lerat, C., El-Idrissi, T., & Rodrigo, E. (2020). Evaluation of phenolic and antioxi-dant properties of strawberry as a function of extraction conditions. Brazilian Journal of Food Technology, 23, 1–11.

Guinqé, R. P. F., Correia, P. M. R., Correia, A. C., Goncalves, F., Brito, M. F. S., & Ribeiro, J. R. P. (2018). Effect of drying temperature on the physical-chemical and sensorial properties of eggplant (Solanum melongena L.). Current Nutrition & Food Science, 14(1), 28–39.

Habibi, F., & Ramezanian, A. (2017). Vacuum infiltration of putrescine enhances bioactive compounds and maintains quality of blood orange during cold storage. Food Chemistry, 227, 1–8.

Hurtado, N. H., & Charfuelan, C. (2019). Contribución a la caracterización y evaluación de la actividad antioxidante de las antocianinas del fruto de Ivilan (Monnina Obtusifolia H.B.K). Información Tecnológica, 30(5), 81–90.

IAL - Instituto Adolf Lutz (2008). Normas analíticas do IAL: métodos químicos e físicos para análise de alimentos. IAL, 1020p

Jiao, Y., Kilmartin, P. A., Fan, M., & Quek, S. Y. (2018). Assessment of phenolic contributors to antioxidant activity of new kiwi fruit cultivars using cyclic voltammetry combined with HPLC. Food Chemistry, 268, 77–85.

Kinupp, V. F., & De Barros, I. B. I. (2008). Protein and mineral contents of native species, potential vegetables, and fruits. Ciencia e Tecnologia de Alimentos, 28(4), 846–857.

Kwiatkowski, A., Coimbra, P. S., Souza, G. S., Costa, C. C. O., Pereira, Q. D., & Minas, R. S. (2016). Influência dos processos de desidratação nos compostos bioativos em polpa de noni (Morinda citrifolia). Xxv Congresso Brasileiro de Ciência e Tecnologia de Alimentos.

Landim, A. P. M., Barbosa, M. I. M. J., & Júnior, J. L. B. (2016). Influence of osmotic dehydration on bioactive compounds, antioxidant capaci-ty, color and texture of fruits and vegetables: a review. Ciência Rural, 46(10), 1714–1722.

Lattuada, D. S., Rieth, S., Back, M. M., & Souza, P. V. D. (2019). Interaction between endomycorrhizae and native fruit tree (Myrtaceae) in Rio Grande do Sul state. Ciencia Florestal, 29(4), 1726–1736.

Lemos, D. M., Rocha, A. P. T., Gouveia, J. P. G., Oliveira, E. N. A., Sousa, E. P., & Silva, S. F. (2019). Elaboração e caracterização de geleia prebiótica mista de jabuticaba e acerola. Brazilian Journal of Food Technology, 22, 1–13.

Mahayothee, B., Thamsala, T., Khuwijitjaru, P., & Janjai, S. (2020). Effect of drying temperature and drying method on drying rate and bioactive compounds in cassumunar ginger (Zingiber montanum). Journal of Applied Research on Medicinal and Aromatic Plants, 18, 100262.

Massaguer, P. R., Silva, A. R., Chaves, R. D., & Gressoni, I. (2014). Fruits and vegetables: Fruit and vegetable juices. Encyclopedia of Food Microbiology: Second Edition, 1, 992–999.

Mayor, L., & Sereno, A. M. (2004). Modelling shrinkage during convective drying of food materials: A review. Journal of Food Engineering, 61(3), 373–386.

Mazzoni, L., Alvarez Suarez, J. M., Giampieri, F., Gasparrini, M., Forbes Hernandez, T. Y., & Mezzetti, B. (2017). Evaluation of strawberry (Fragaria × ananassa Duch.) “Alba” sensorial and nutritional quality, and its in vitro effects against human breast cancer cells viability. Acta Horticulturae, 1156, 379–387.

Medina, A. L., Haas, L. I. R., Chaves, F. C., Salvador, M., Zambiazi, R. C., Da Silva, W. P., Nora, L., & Rombaldi, C. V. (2011). Araçá (Psidium cattleianum Sabine) fruit extracts with antioxidant and antimicrobial activities and antiproliferative effect on human cancer cells. Food Chemistry, 128(4), 916–922.

Meregalli, M. M., Puton, B. M. S., Camera, F. D. M., Amaral, A. U., Zeni, J., Cansian, R. L., Mignoni, M. L., & Backes, G. T. (2020). Conven-tional and ultrasound-assisted methods for extraction of bioactive compounds from red araçá peel (Psidium cattleianum Sabine). Arabian Jour-nal of Chemistry, 13(6), 5800–5809.

Miguel, G. A., & Álvarez-López, C. (2020). Extraction and antioxidant activity of sericin, a protein from silk. Brazilian Journal of Food Technol-ogy, 23, 1–14.

Moreira-Araújo, R. S. R., Barros, N. V. A., Porto, R. G. C. L., Brandão, A. C. A. S., Lima, A., & Fett, R. (2019). Bioactive compounds and antiox-idant activity three fruit species from the Brazilian Cerrado frutos de três espécies vegetais do Cerrado Brasileiro. Revista Brasileira de Fruticultu-ra, 41(3), 0–2.

Nascimento, R. A., Andrade, E. L., Santana, E. B., Paixão Ribeiro, N. F., Costa, C. M. L., & Faria, L. J. G. (2019). Bacaba powder produced in spouted bed: An alternative source of bioactive compounds and energy food product. Brazilian Journal of Food Technology, 22, 1–15.

Nemzer, B., Vargas, L., Xia, X., Sintara, M., & Feng, H. (2018). Phytochemical and physical properties of blueberries, tart cherries, strawberries, and cranberries as affected by different drying methods. Food Chemistry, 262, 242–250.

Neri-Numa, I. A., Soriano Sancho, R. A., Pereira, A. P. A., & Pastore, G. M. (2018). Small Brazilian wild fruits: Nutrients, bioactive compounds, health-promotion properties and commercial interest. Food Research International, 103, 345–360.

Nunes, L. P., Ferrari, C. C., Ito, D., Souza, E C. G., & Germer, S. P. M. (2020). Drum drying process of jabuticaba pulp using corn starch as an additive. Brazilian Journal of Food Technology, 23, 1–13.

Oliveira, L. M., & Antelo, F. (2020). Thermostability of the visual color and anthocyanins from Rio-Grande-Cherry (Eugenia involucrata DC). Brazilian Journal of Food Technology, 23, 1–12.

Paludo, M. C., Colombo, R. C., Filho, J. T., Hermosín‑Gutiérrez, I., Balluse, C. A., & Godoy, and H. T. (2019). Optimizing the extraction of anthocyanins from the skin and phenolic compounds from the seed of Jabuticaba fruits. (Journal of the Brazilian Chemical Society, 30(7), 1506–1514.

Porto, A. S., Pereira, T. S. S., & Molina, M. C. B. (2014). Consumo de sódio e potássio por diferentes métodos de avaliação: uma revisão em estudos populacionais. Revista Brasileira de Pesquisa Em Saúde/Brazilian Journal of Health Research, 16(3), 131–139.

Reis, L. C. R., Bernardi, J. R., & Silva, A. C. P. (2016). Análise da composição nutricional e estabilidade de compostos fenólicos e antocianinas totais do guabijú (Myrcianthes punges). Brazilian Journal of Food Research, 7(1), 89–104.

Rodrigues, N. F., Balbinott, N., Paim, I., Guzman, F., & Margis, R. (2020). Comparative analysis of the complete chloroplast genomes from six neotropical species of myrteae (Myrtaceae). Genetics and Molecular Biology, 43(2), 1–6.

Salgado-Chávez, J. A., Palacio-Valencia, A. E., & Valero-Valero, N. O. (2020). Actividad antioxidante e influencia del periodo climático sobre el contenido de polifenoles totales en Merremia aegyptia. Biotecnoloía En El Sector Agropecuario y Agroindustrial, 18(2), 82.

Salimi, A., & Hoseinnia, F. (2020). Optimization of coconut osmotic drying preceded by microwave treatment by response surface methodology. Brazilian Journal of Food Technology, 23.

Santos, R. F., Tonial, G. M. B., Junior, A. W., Tonial, I. B., & Lucchetta, L. (2018). Secagem de frutas nativas e obtenção de farinhas: avaliação dos compostos fenólicos e atividade antioxidante. 167–168.

Schiassi, M. C. E. V., Souza, V. R., Lago, A. M. T., Campos, L. G., & Queiroz, F. (2018). Fruits from the Brazilian Cerrado region: Physico-chemical characterization, bioactive compounds, antioxidant activities, and sensory evaluation. Food Chemistry, 245, 305–311.

Seleem, D., Pardi, V., & Murata, R. M. (2017). Review of flavonoids: A diverse group of natural compounds with anti-Candida albicans activity in vitro. Archives of Oral Biology, 76, 76–83.

Selamoglu, Z., Sevindik, M., Bal, C., Ozaltun, B., Sem, İ , and Pasdaran, A. (2020). Antioxidant, antimicrobial and DNA protection activities of phenolic content of Tricholoma virgatum (Fr.) P.Kumm. Biointerface Research in Applied Chemistry, 10(3), 5500–5506.

Seraglio, S. K. T., Schulz, M., Nehring, P., Della Betta, F., Valese, A. C., Daguer, H., Gonzaga, L. V., Fett, R., & Costa, A. C. O. (2018). Nutrition-al and bioactive potential of Myrtaceae fruits during ripening. Food Chemistry, 239, 649–656.

Sharif, N., Khoshnoudi-Nia, S., & Jafari, S. M. (2020). Nano/microencapsulation of anthocyanins, a systematic review and meta-analysis. Food Research International, 132(January), 109077.

Sharma, R. J., Gupta, R. C., Singh, S., Bansal, A. K., & Singh, I. P. (2016). Stability of anthocyanins- and anthocyanidins-enriched extracts, and formulations of fruit pulp of Eugenia jambolana ('jamun’). Food Chemistry, 190, 808–817.

Silvestri, J. D. F., Paroul, N., Czyewski, E., Lerin, L., Rotava, I., Cansian, R. L., Mossi, A., Toniazzo, G., Oliveira, D. De, & Treichel, H. (2010). Chemical composition and antioxidant and antibacterial activities of clove essential oil (Eugenia caryophyllata Thunb). Revista Ceres, 57(5), 589–594.

Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent by. Methods in Enzymology, 299, 152–178.

Sonawane, A., Pathak, S., and Pradhan, R.C. (2021). Bioactive compounds in bael fruit pulp waste: Ultrasound-assisted extraction, characteriza-tion, modeling, and optimization approaches. Biointerface Research in Applied Chemistry, 11(2), 9318–9334.

Souza, V. R., Pereira, P. A. P., Silva, T. L. T., Oliveira Lima, L. C., Pio, R., & Queiroz, F. (2014). Determination of the bioactive compounds, antioxidant activity and chemical composition of Brazilian blackberry, red raspberry, strawberry, blueberry and sweet cherry fruits. Food Chem-istry, 156, 362–368.

Teles, A. S. C., Chávez, D. W. H., Santos, F. G, Cabral, L. M. C., & Tonon, R. V. (2018). Effect of temperature on the degradation of bioactive compounds of Pinot Noir grape pomace during drying. Brazilian Journal of Food Technology, 21.

Vanin, A. B., Orlando, T., Piazza, S. P., Puton, B. M. S., Cansian, R. L., Oliveira, D., & Paroul, N. (2014). Antimicrobial and antioxidant activities of clove essential oil and eugenyl acetate produced by enzymatic esterification. Applied Biochemistry and Biotechnology, 174(4), 1286–1298.

Vergara, L. P., Reissig, G. N., Franzon, R. C., Rodrigues, R. S., & Chim, J. F. (2018). Bioactive compound retention in frozen red and yellow strawberry guava pulps added with l-ascorbic acid. Revista Brasileira de Fruticultura, 40(6).

Verruck, S., Prudencio, E. S., & Silveira, S. M. (2018). Compostos bioativos com capacidade antioxidante e antimicrobiana em frutas. Revista Do Congresso Sul Brasileiro de Engenharia de Alimentos, 4(1), 111–124.

Vetö, N. M., Guzman, F., Kulcheski, F. R., Segatto, A. L. A., Lacerda, M. E. G., Margis, R., & Turchetto-Zolet, A. C. (2020). Transcriptomics analysis of psidium cattleyanum sabine (Myrtaceae) unveil potential genes involved in fruit pigmentation. Genetics and Molecular Biology, 43(2), 1–11.

Zenebon, O., Pascuet, N. S., & Tiglea, P. (2008). Instituto Adolfo Lutz. Métodos físico-químicos para análise de alimentos. Métodos Físicos-Quimicos Para Análise de Alimentos, 1020.

Downloads

Published

04/07/2021

How to Cite

BOMBANA, V. B. .; ORO, C. E. D. .; RIGO, D. .; POLINA, C. C. .; DENTI , A. F. .; TRES , B. P. .; WISNIEWSKI, M. S. W. .; STEFFENS , J. .; PAROUL, N.; DALLAGO, R. M.; BACKES, G. T.; CANSIAN, R. L. Influence of drying on bioactive compounds and antioxidant activity of fruits of guabiju (Myrcianthes pungens). Research, Society and Development, [S. l.], v. 10, n. 8, p. e5510817024, 2021. DOI: 10.33448/rsd-v10i8.17024. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/17024. Acesso em: 2 jan. 2025.

Issue

Section

Agrarian and Biological Sciences