Photosynthetic activity and biomass production of potato clones as a function of soil phosphorus availability

Authors

DOI:

https://doi.org/10.33448/rsd-v10i8.17326

Keywords:

CO2 assimilation rate; Solanum tuberosum L.; Dry mass; Intercellular CO2 concentration; Transpiration.

Abstract

Potato plants (Solanum tuberosum L.) have a higher requirement for phosphorus (P) to achieve high yields of tubers. In P-deficient soils, photosynthetic activity and crop productivity are considerably reduced. Thus, the aim of this study was to investigate the effects on photosynthesis and growth of potato clones cultivated at different levels of P in the soil. The experiment was conducted in a greenhouse, in a completely randomized design, using soil as substrate, where treatments were combined in a factorial scheme with three potato clones (Atlantic, SMIC 148-A and SMINIA 793101-3) and four P doses (35, 70, 140 and 280 kg P2O5 ha-1). The application of P doses changed THE PRODUCTION of dry matter of tubers and total of the clones studied. The SMIC 148-A clone presented a higher of net CO2 assimilation rate and stomatal conductance at doses of 70, 140 and 280 kg P2O5 ha-1. The Atlantic clone was the one that presented the highest total dry mass production in the lowest dose of P, as well as the clone that invested the photoassimilates more efficiently, since it obtained the highest dry mass of tubers. The highest dose of phosphorus was the one that provided the largest mass of tubers.

References

Balemi, T. & Schenk, M. K. (2009). Genotypic variation of potato for phosphorus efficiency and quantification of phosphorus uptake with respect to root characteristics. Journal of Plant Nutrition and Soil Science, 172, 669–677. 10.1002/jpln.200800246

Braun, H. Rezende Fontes, P. C. R., Busato, C. & Cecon, P. R. (2011). Teor e exportação de macro e micronutrientes nos tubérculos de cultivares de batata em função do nitrogênio. Bragantia, 70, 50-57. 10.1590/S0006-87052011000100009

Comissão de química e fertilidade do solo - RS/SC. (2004). Manual de adubação e calagem para os Estados do Rio Grande do Sul e Santa Catarina. 10. Ed. Porto Alegre.

Embrapa. (2018). Sistema brasileiro de classificação de solos. 5. ed. – Rio de Janeiro: EMBRAPA-SPI, 356p. https://www.embrapa.br/solos/sibcs

Dechassa, N., Schenk, M. K., Claassen, N. & Steingrobe, B. (2003). Phosphorus efficiency of cabbage (Brassica oleraceae L. var. capitata), carrot (Daucus carota L.), and potato (Solanum tuberosum L.). Plant Soil, 250,215–224. 10.1023/A:1022804112388

Desalegn, R., Wakene, T., Dawit, M. & Tolessa, T. (2016). Effects of Nitrogen and Phosphorus Fertilizer Levels on Yield and Yield Components of Irish Potato (Solanum tuberosum) at Bule Hora District, Eastern Guji Zone, Southern Ethiopia. International Journal of Agricultural Economics, 1, 71-77.

Domingues, T. F., Meir, P., Feldpausch, T. R., Saiz, G., Veenendaal, E. M., Schrodt, F., Bird, M., Djagbletey, G., Hien, F., Compaore, H., Diallo, H., Grace, J. & Lloyd, J. (2010). Co-limitation of photosynthetic capacity by nitrogen and phosphorus in West capacity by nitrogen and phosphorus in West Africa Woodlands. Plant, Cell and Environment, 33,959-980. 10.1111/j.1365-3040.2010.02119.x

Fleisher, D. H. Wang, Q., Timlin, D. J., Chun, J. & Reddy, V. R. (2012). Response of Potato Gas Exchange and Productivity to Phosphorus Deficiency and Carbon Dioxide Enrichment. Crop Science, 52, 1803-1815. 10.2135/cropsci2011.09.0526

Ferreira, D.F. (2000). Análises estatísticas por meio do Sisvar para Windows versão 4.0. In: Reunião anual da região brasileira da sociedade internacional de biometria, SIB, 255-258.

Groot, C. C., Boogaard, R. V. D., Marcelis, L. F. M., Harbinson, J. & Lambers, H. (2003). Contrasting effects of N and P deprivation on the regulation of photosynthesis in tomato plants in relation to feedback limitation. Journal of Experimental Botany, 54, 1957–1967. 10.1093/jxb/erg193

Haan, S. & Rodriguez, F. (2016). Potato Origin and Production. In: Singh, J. & Kaur, L. (ed.) Advances in Potato Chemistry and Technology. 10.1016/B978-0-12-800002-1.00001-7

Heldwein, A. B., Streck, N. A. & Bisognin, D. A. (2009). Batata. In: Monteiro, J. E. B. A. (ed.) Agrometeorologia dos cultivos: o fator meteorológico na produção agrícola. Brasília: Instituto Nacional de Meteorologia, .91-109.

Hernández, I. & Munné-Bosch, S. (2015). Linking phosphorus availability with photo-oxidative stress in plants. Journal of Experimental Botany, 66, 2889-2900. 10.1093/jxb/erv056

Iglesias, D. J., Lliso, I., Tadeo, F. R. & Talon, M. (2002). Regulation of photosynthesis through source: sink imbalance in citrus is mediated by carbohydrate content in leaves. Physiologia Plantarum, 116, 563-572. 10.1034/j.1399-3054.2002.1160416.x

Jacob, J. & Lawlor, D. W. (1992). Dependence of photosynthesis of sunflower and maize on phosphate supply, ribulose-1,5-bisphosphate carboxylase/oxygenase activity, and ribulose-1,5-bisphosphate pool size. Plant Physiology, 98,801-807. http://dx.doi.org/10.1104/pp.98.3.801

Koch, M., Naumann, M., Pawelzik, E., Gransee, A. & Thiel, H. (2019). The importance of nutrient management for potato production Part I: Plant nutrition and yield. Potato Research. 10.1007/s11540-019-09431-2

Mesquita, H. A., Paula, M. B., Venturin, R. P., Pádua, J. G. & Yuri, J. E. (2011). Fertilização da cultura da batata. In: Zambolim, L. (ed.). Produção integrada da batata. Viçosa: Universidade Federal de Viçosa, Departamento de Fitopatologia, 1,351-380.

Nunes, J. C. S., Fontes, P. C. R., Araújo, E. F. & Sediyama, C. (2006). Potato plant growth and macronutrients uptake as affected by soil tillage and irrigation systems. Pesquisa Agropecuária Brasileira, 41,1787-1792. 10.1590/S0100-204X2006001200014

Paiva, A. S., Fernandes, E. J., Rodrigues, T. J. D. & Turco, J. E. P. (2005). Condutância estomática em folhas de feijoeiro submetido a diferentes regimes de irrigação. Engenharia Agrícola, 25,161-169. 10.1590/S0100-69162005000100018

Pieters, A. J., Paul, M. J. & Lawlor, D. W. (2001). Low sink demand limits photosynthesis under Pi deficiency. Journal of Experimental Botany, 52,1083-109. 10.1093/jexbot/52.358.1083

Plenet, D., Mollier, A. & Pellerin, S. (2000). Growth analysis of maize field crops under phosphorus deficiency. II. Radiation-use efficiency, biomass accumulation and yield components. Plant and Soil, 224,259-272. 10.1023/A:1004835621371

Rosen, C. J., Kelling, K. A., Stark, J. C. & Porter, G. A. (2014). Optimizing phosphorus fertilizer management in potato production. American Journal of Potato Research, 91,145-160. 10.1007/s12230-0149371-2.10

Santos, K. R., Pereira, M. P., Ferreira, A. C. G., Rodrigues, A. C. A., Castro, E. M., Corrêa, F. F. & Pereira, F. J. (2015). Typha domingensis Pers. growth responses to leaf anatomy and photosynthesis as influenced by phosphorus. Aquatic Botany, 122, 47–53. 10.1016/j.aquabot.2015.01.007

Santos, M. G., Ribeiro, R. V., Oliveira, R. F., Machado, E. C. & Pimentel, C. (2006). The role of inorganic phosphate on photosynthesis recovery of common bean after a mild water deficit. Plant Science, 170,659-664. 10.1016/j.plantsci.2005.10.020

Sarker, B. C., Karmoker, J. L. & Rashid, P. (2010). Effects of phosphorus deficiency on anatomical structures in maize (Zea mays L.). Bangladesh Journal of Botany, 39(1), 57-60. 0.3329/bjb.v39i1.5527

Sausen, D., Mambrin, R. B., Cassanego, D. B., Alves, J. S., Pereira, A. S., Dorneles, A. O. S., Bernardy, K. & Schwalbert, R. (2020). Produção de batata a partir de micropropagação e de minitubérculos sob níveis de fósforo em solução nutritiva. Brazilian. Journal of Development, 6(2), 6648-6657. 10.34117/bjdv6n2-097

Sharifi, M., Zebarth, B. J., Hajabbasi, M. A. & Kalbasi, M. (2005). Dry matter and nitrogen accumulation and root morphological characteristics of two clonal selections of ‘Russet Norkotah’ potato as affected by nitrogen fertilization. Journal of Plant Nutrition, 28, 2243–2253. 10.1080/01904160500323552

Shen, J., Yuan, L., Zhang, J., Li, H., Bai, Z., Chen, X., Zhang, W. & Zhang, F. (2004). Phosphorus dynamics: From soil to plant. Plant Physiology, 156,997-1005. 10. 1104/ pp. 111. 175232

Shubhra, B., Dayal, J., Goswami, C. L. & Munjal R. et. al. D. (2004). Influence of phosphorus application on water relations, biochemical parameters and gum content in cluster bean under water deficit. Biologia Plantarum, 48,445-448. 10.1023/B:BIOP.0000041101.87065.c9

Soratto, R. P., Pilon, X. C., Fernandes, A. M. & Moreno, L. A. (2015). Phosphorus Uptake, Use Efficiency, and Response of Potato Cultivars to Phosphorus Levels. Potato Research, 58,121–134. 10.1007/s11540-015-9290-8

Thuynsma, R., Kleinert, A., Kossmann, J., Valentine, A. J. & Hills, P. N. (2016). The effects of limiting phosphate on photosynthesis and growth of Lotus japonicus. South African Journal of Botany, 104,244-248. 10.1016/j.sajb.2016.03.001

Thornton, M. K., Novy, R. G. & Stark, J. C. (2014). Improving phosphorus use efficiency in the future. American Journal of Potato Research, 91,175–179. Obtido de https://doi.org/10.1007/s12230-014-9369-9

Wang, X., Shen, J. & Liao, H. (2010). Acquisition or utilization, which is more critical for enhancing phosphorus efficiency in modern crops? Plant Science, 179,302-306. 10.1016/j.plantsci.2010.06.007

Warren, C. R. (2011). How does P affect photosynthesis and metabolite profles of Eucalyptus globulus? Tree Physiology, 31,727–739. 10.1093/tre e phys/tpr 064

Yi, Y., Sugiura D., & Yano, K. (2019). Quantifying Phosphorus and Water Demand to Attain Maximum Growth of Solanum tuberosum in a CO2-Enriched Environment. Frontiers in Plant Science, 10, 1417. 10.3389/fpls.2019.01417

Published

11/07/2021

How to Cite

TAROUCO, C. P. .; SAUSEN, D. .; TAVARES, M. da S. .; NICOLOSO, F. T. . Photosynthetic activity and biomass production of potato clones as a function of soil phosphorus availability. Research, Society and Development, [S. l.], v. 10, n. 8, p. e24310817326, 2021. DOI: 10.33448/rsd-v10i8.17326. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/17326. Acesso em: 23 nov. 2024.

Issue

Section

Agrarian and Biological Sciences