Chemical Composition and Biological Activities of Essential Oils from Fresh Vismia guianensis (Aubl.) Choisy and Vismia cayennensis (Jacq.) Pers. Leaves

Authors

DOI:

https://doi.org/10.33448/rsd-v10i8.17440

Keywords:

Essential oils; Chemical compostition; Hypericaceae.

Abstract

The Vismia Vand. genus encompasses many species indigenous to the Amazon rain forest where they are popularly known as “Lacre” bark and leaves are widely employed by locals to treat dermatophytoses. The aim of this study was to investigate the chemical composition of essential oils (EOs) extracted from the aerial parts of the species Vismia guianensis (Aubl.) Choisy and Vismia cayennensis (Jacq.) Pers. and to assess their antimicrobial activity against the bacteria Staphylococcus aureus Rosenbach 1884 and Escherichia coli (Migula 1895) Castellani and Chalmers 1919 as well as the fungi Candida albicans (C.P. Robin) Berkhout 1923 and Candida parapsilosis (Ashford) Langeron & Talice 1932. The analysis of the chemical composition of the essential oil extracted from V. guianensis leaves (EOVg) indicated 46 components, of which three sesquiterpenes predominated, namely: (E)-caryophyllene (10.40%), α-copaene (29.45%), and (E)-nerolidol (24.06%). As to the essential oil from V. cayennensis leaves (EOVc), 61 components were identified, of which two oxygenated sesquiterpenes stood out as the main components, namely, germacrone (25.42%) and curzerene (25.29%). EOVg exhibited Minimum Inhibitory Concentration (MIC) of 1.56 µg/mL against the yeast C. parapsilosis whereas EOVc was active against the bacteria E. coli and S. aureus as well as the yeast C. parapsilosis. The results obtained in this study strongly recommend further research on the essential oils in question with a view to isolating and identifying the components responsible for their observed antimicrobial activities.

Author Biographies

Antonia Tavares Barbosa, University Federal of Amazonas

Institute of Exact Sciences and Technology

Vitor Hugo Neves da Silva, University Federal of Amazonas

Institute of Exact Sciences and Technology

Bruna Yuka Koide da Silva, University Federal of Amazonas

Institute of Exact Sciences and Technology

Aniele da Silva Neves Lopes, University Federal of Amazonas

Institute of Exact Sciences and Technology

Isabel Reis Guesdon , University Federal of Amazonas

Institute of Exact Sciences and Technology

Paulo José Sousa Maia, University Federal of Amazonas

Institute of Exact Sciences and Technology

Maxwell Adriano Abegg, University Federal of Amazonas

Institute of Exact Sciences and Technology

Geone Maia Corrêa, University Federal of Amazonas

Institute of Exact Sciences and Technology

Dominique Fernandes de Moura do Carmo, Universidade Federal do Amazonas

University Federal of Amazonas

References

Adams R.P. (2007). Identification of Essential Oils Components by Gas Chromatography/Mass Spectroscopy. EUA: Allured Publishing Corporation, p. 804.

Aligiannis, N., Kalpoutzakis, E., Mitaku S., Chinou, I. B. (2001). Composition and antimicrobial activity of the essential oils of two Origanum species. Journal of agricultural and food chemistry, 49, 4168-4170. https://doi.org/10.1021/jf001494m.

Astani, A., Reichling, J., Schnitzler P. (2009). Screening for Antiviral Activities of Isolated Compounds from Essential Oils. Evid Based Complement Alternat Med, 2011, 1-7. https://doi.org/10.1093/ecam/nep187.

Belltti, N., Ndagijimana, M., Sisto, C., Guerzoni, M. E., Lanciotti, R., Gardini, F. (2004). Evaluation of the antimicrobial activity of citrus essences on Saccharomyces cerevisiae. Journal of Agricultural and Food Chemistry, 52: 6932-6938. https://doi.org/10.1021/jf049444v.

Biavatti, M. W., Dossin, D., Deschamps, F. C., Lima, M. D. P. (2006). Análise de óleos-resinas de copaíba: contribuição para o seu controle de qualidade. Revista Brasileira de Farmacognosia, 16 (2), 230-235. http://dx.doi.org/10.1590/S0102-695X2006000200017.

Bloise, M. I. (2003). Óleos vegetais e especialidades da floresta Amazônica. Cosmetics & Toiletries 15(5): 46-49.

Buitrago, A., Rojas, J., Rojas, L., Velasco, J., Morales, A., Peñaloza, Y., Díaz, C. (2015). Essential Oil Composition and Antimicrobial Activity of Vismia macrophylla Leaves and Fruits Collected in Táchira-Venezuela. Natural Product Communications, 10(2), 375-382. https://doi.org/10.1177%2F1934578X1501000244.

Cardoso, P. R (2011). Estruturas secretoras em plantas. Programa de Pós Graduação em Biodiversidade Vegetal e Meio Ambiente, São Paulo.

Citó, A. M. G. L., Souza, A. A., Lopes, J. A. D., Chaves, M. H., Costa, F. B., Sousa, S. A. A., Amaral, M. P. M. (2003). Resina de Protium heptaphyllum March (Burceraceae): Composição química do óleo essencial e avaliação citotóxica frente à Artemia salina Leach. Anais da Associação Brasileira de Química, 52(2), 74-76.

Cowan, M. M. (1999). Plant products as antimicrobial agents. Clinical microbiology reviews, 12(4), 564-582.

Craveiro, A. A., Fernandes, A. G., Andrade, C. H. S., Matos, F. J. A., Alencar, J. W., Machado, M. I. L (1981). Óleos essenciais de plantas do nordeste. Fortaleza: Editora UFC. 210p.

Evans, W. C. (1996). Trease and Evans' Pharmacognosy, 14th ed., WB Saunders Company: London, cap. 7.

Gelinski, J. M. L. N., Dalla Rosa, J. C., Paravisi, E. D.F. A., Baratto, C. M. (2007). Atividade antibacteriana do óleo essencial de Baccharis dracunculifolia DC (Asteraceae) e de seu composto ativo nerolidol em combinação ao EDTA ou lisozima. Evidência, 7(2), 131-144.

Gobbo-Neto, L., Lopes, N. P. (2007). Medicinal plants: factors of influence on the content of secondary metabolites. Química Nova, 30(2), 374–381. http://dx.doi.org/10.1590/S0100-40422007000200026.

Holetz, F. B., Pessini, G. L., Sanches, N. R., Cortez, D. A. G., Nakamura, C. V., Dias Filho, B. P. (2002). Screening of some plants used in the Brazilian folk medicine for the treatment of infectious diseases. Memórias do Instituto Oswaldo Cruz, 97(7),1027-1031. http://dx.doi.org/10.1590/S0074-02762002000700017.

Hidayat Hussain, J. H., Al-Harrasi, A., Saleem, M., Green, I. R., Ree, T. V., Ghulam, A. (2012) Chemistry and biology of genus Vismia. Pharmaceutical Biology, 50, 1448-1462. https://doi.org/10.3109/13880209.2012.680972.

Křůmal, K., Kubátková, N., Večeřa, Z., Mikuška, P. (2015). Antimicrobial properties and chemical composition of liquid and gaseous phases of essential oils. Chemical Papers, 69, 1084–1092. https://doi.org/10.1515/chempap-2015-0118.

Lima, I. O., Oliveira, R. D. A. G., Lima, E. D. O., Souza, E. L. D., Farias, N. P., Navarro, D. D. F. (2005). Inhibitory effect of some phytochemicals in the growth of yeasts potentially causing opportunistic infections. Brazilian Journal of Plarmaceutical Sciences, 41(2), 199-203. http://dx.doi.org/10.1590/S1516-93322005000200007.

Madigan, M., Martinko, J. (2004). The Bacteria. In: Brock- Biology of Microorganisms. New Jersey: Prantice Hall, 718-814.

Maia, P. J. S., Cruz, J. F., Augusto, F. A. de F., Santos, S. de F. F., Souza, E. A. (2019). Photophysical properties of a perylene derivative for use as catalyst in ethanol electrooxidation. Research on Chemical Intermediates, 45, 5451-5472. https://doi.org/10.1007/s11164-019-03911-3.

Marinho, L. C., Ely, C. V., Amorim, A. M. (2017). Flora das cangas da Serra dos Carajás, Pará, Brasil: Hypericaceae. Rodriguésia, 68, 979-986. http://dx.doi.org/10.1590/2175-7860201768333

Martins, M. V., Shumizu, G. H., Bittrich, V. (2018). Flora da Reserva Ducke, Estado do Amazonas, Brasil: Hypericaceae. Hoehnea, 45(3), 361-371. https://doi.org/10.1590/2236-8906-13/2018.

Montanari, R. M., Barbosa, L. C., Demuner, A. J., Silva, C. J., Carvalho, L. S., Andrade, N. J. (2011). Chemical composition and antibacterial activity of essential oils from Verbenaceae species: Alternative sources of (E)-caryophyllene and germacrene-D. Química Nova, 34(9), 1550-1555. https://doi.org/10.1590/S0100-40422011000900013.

Ogunwande, I. A., Olawore, N. O., Ekundayo, O., Walker, T. M., Schmidt, J. M., Setzer, W. N. (2005). Studies on the essential oils composition, antibacterial and cytotoxicity of Eugenia uniflora L. International journal of Aromatherapy, 15(3), 147-152. https://doi.org/10.1016/j.ijat.2005.07.004.

Paolini, J., Ouariachi, E. M. E., Bouyanzer, A., Hammouti, B., Desjobert, J. M., Costa, J., Muselli, A. (2010). Chemical variability of Artemisia herba-alba Asso essential oils from East Morocco. Chemical Papers, 64: 550–556. https://doi.org/10.2478/s11696-010-0051-5.

Peñuelas, J., Munné-Bosch, S. (2005). Isoprenoids: an evolutionary pool for photoprotection. Trends in plant science, 10(4), 166-169. https://doi.org/10.1016/j.tplants.2005.02.005.

Pérez-López, A., Cirio, A.T., Rivas-Galindo, V. M., Aranda, R.S., de Torres, N. W. (2011). Activity against Streptococcus pneumoniae of the essential oil and δ-cadinene isolated from Schinus molle fruit. Journal of Essential Oil Research, 23(5): 25-28.https://doi.org/10.1080/10412905.2011.9700477.

Reinsvold, R. E., Jinkerson, R. E., Radakovits, R., Posewitz, M. C., Basu, C. (2011). The production of the sesquiterpene β-caryophyllene in a transgenic strain of the cyanobacterium Synechocystis. Journal of plant physiology. USA, 168(8), 848-852.https://doi.org/10.1016/j.jplph.2010.11.006.

Razavi, F., Khajehsharifi H (2021) A colorimetric paper-based sensor with nanoporous SBA-15 for simultaneous determination of histidine and cysteine in urine samples. Chemical Papers. 75: 3401–3410 https://doi.org/10.1007/s11696-021-01548-4.

Rojas, J., Buitrago, A., Rojas, L., Morales, A. (2011). Essential oil composition of Vismia macrophylla leaves (Guttiferae). Natural product communications, 6(1), 85-86. https://doi.org/10.1177%2F1934578X1100600120.

Saikia, S., Tamuli, K. J., Narzary, B., Banik, D., Bordoloi, M. (2020) Chemical characterization, antimicrobial activity, and cytotoxic activity of Mikania micrantha Kunth flower essential oil from North East India. Chemical Papers. 74, 2515–2528. https://doi.org/10.1007/s11696-020-01077-6.

Silveira, J. C., Busato, N., Costa, A., Junior, E. C. (2012). Levantamento e análise de métodos de extração de óleos essenciais. Enciclopédia Biosfera, 8 (15), 2038-2052.

Silvestre, R. G., de Moraes, M. M., Lins, A. C., Ralph, M. T., Lima-Filho, J. V., Camara, C. A., Silva, T. M. (2012). Chemical composition, antibacterial and antioxidant activities of the essential oil from Vismia guianensis fruits. African Journal of Biotechnology, 11(41), 9888-9893. https://doi.org/10.5897/AJB11.3834.

Simões, E. P., Schenkel, G., Gosmann, J. C. P., Mello, L. A. M., Petrovick, P. R. (2007). Farmacognosia: da planta ao medicamento. 6. ed.- Porto Alegre: Editora da UFRGS; Florianópolis: Editora da UFSC, p. 467-495.

Souza, E. L. D., Lima, E. D. O., Freire, K. R. D. L., Sousa, C. P. D. (2005). Inhibitory action of some essential oils and phytochemicals on the growth of various moulds isolated from foods. Brazilian archives of Biology and Technology, 48(2), 245-250. http://dx.doi.org/10.1590/S1516-89132005000200011.

Stojanović-Radić, Z., Čomić, L., Radulović, N., Dekić, M., Ranđelović, V., Stefanović, O. (2010). Chemical composition and antimicrobial activity of Erodium species: E. ciconium L., E. cicutarium L., and E. absinthoides Willd. (Geraniaceae). Chemical Papers. 64, 368–377. https://doi.org/10.2478/s11696-010-0014-x.

Thuy, B. T. P., Hieu, L. T., My, T. T. A., Hai, N. T. T., Loan, H. T. P., Thuy, N. T. T., Triet, N. T., Anh, T. T. V., Dieu, N. T. X., Quy, P. T., Trung, N. V., Quang, D. T., Huynh, L. K., Nhung, N. T. A. (2021). Screening for Streptococcus pyogenes antibacterial and Candida albicans antifungal bioactivities of organic compounds in natural essential oils of Piper betle L., Cleistocalyx operculatus L. and Ageratum conyzoides L. Chemical Papers. 75, 1507–1519. https://doi.org/10.1007/s11696-020-01404-x.

Vaz, A. B., Mota, R. C., Bomfim, M. R. Q., Vieira, M. L., Zani, C. L., Rosa, C. A., Rosa, L. H. (2009). Antimicrobial activity of endophytic fungi associated with Orchidaceae in Brazil. Canadian journal of microbiology, 55(12),1381-1391. https://doi.org/10.1139/W09-101.

Veiga Junior, V. F.; Pinto, A. C. (2002). O gênero copaifera L. Química nova, 25(2):273-286. http://dx.doi.org/10.1590/S0100-40422002000200016.

Zhang, L., Yang, Z., Wei, J., Su, P., Pan, W., Zheng, X., Du, Z. (2017) Essential oil composition and bioactivity variation in wild-growing populations of Curcuma phaeocaulis Valeton collected from China. Industrial Crops and Products, 103,274-282. https://doi.org/10.1016/j.indcrop.2017.04.019.

Zheng, G. Q., Kenney, P. M., Lam, L. K. (1992). Sesquiterpenes from clove (Eugenia caryophyllata) as potential anticarcinogenic agents. Journal of natural products, 55(7),999-1003. https://doi.org/10.1021/np50085a029.

Waterman, P. G., Mole, S.(1994). Analysis of phenolic plant metabolites, 1st ed., Blackwell Scientific Publications: Oxford, cap. 3.

Wang, H. K. (2000). The therapeutic potential of flavonoids. Expert opinion on investigational drugs, 9(9), 2103-2119. https://doi.org/10.1517/13543784.9.9.2103.

Downloads

Published

14/07/2021

How to Cite

BARBOSA, A. T.; SILVA, V. H. N. da; SILVA, B. Y. K. da; LOPES, A. da S. N. .; GUESDON , I. R. .; MAIA, P. J. S. .; ABEGG, M. A. .; CORRÊA, G. M. .; CARMO, D. F. de M. do . Chemical Composition and Biological Activities of Essential Oils from Fresh Vismia guianensis (Aubl.) Choisy and Vismia cayennensis (Jacq.) Pers. Leaves. Research, Society and Development, [S. l.], v. 10, n. 8, p. e37410817440, 2021. DOI: 10.33448/rsd-v10i8.17440. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/17440. Acesso em: 15 jan. 2025.

Issue

Section

Exact and Earth Sciences