Test time assessment on student's performance of statistics subjects by generalized linear models
DOI:
https://doi.org/10.33448/rsd-v10i9.17883Keywords:
Time under evaluation; Odds ratio; Logistic regression; Educational indicators.Abstract
Can the time it takes a student to complete a test influence his / her performance? To answer this question, the logistic regression model was considered. In its development, evaluation was considered as a way of quantifying the performance of a student reflecting his degree of knowledge in a given content. For this we use records of the initial and final moments when developing an evaluation. The records of time spent were obtained from five different undergraduate classes, with subjects taught by the same teacher, with the same theoretical content, at the same university. The results confirm statistically that each additional minute that the student remains taking the test, implies in greater chances of obtaining good performance, as well as differences of performance between the feminine and masculine genders, although not statistically different, demonstrating that feminine students have greater chances of reaching the average. The model also confirms, according to the odds ratios that during the evaluations the students' performance decreases, having the best score in the first test. Through the references consulted, we understand that the difference in the grades of each student is influenced by several factors, the result of their own experiences.
References
Abdellatif Fadul, A., & Osman Abd Elghafar Mohammed, K. (2018). Using Logistic Regression to Model Factors Associated With Basic School Drop-Out in Kassala State, Sudan. Global Journal of Pure and Applied Mathematics, 14(2), 301–313. Retrieved from http://www.ripublication.com
Abedalaziz, N. (2010). Detecting gender related DIF using logistic Regression and Mantel-Haenszel approaches. Procedia - Social and Behavioral Sciences, 7(2), 406–413. doi: 10.1016/j.sbspro.2010.10.055
Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716–723.
Alija, S. (2015). Application of Ordinal Logistic Regression in the Study of Students’ Achievement in External Testing. Bulletin of the Transilvania University of Braşov,Series VII: Social Sciences - Law, 8(57), 17–22. Retrieved from http://www.iiste.org/Journals/index.php/MTM/article/view/7679
Alija, S., Snopce, H., & Aliu, A. (2016). Logistic Regression for Determining Factors Influencing Students ’ Perception of Course. The Eurasia Proceedings of Educational and Social Sciences, 5, 99–106. Retrieved from https://dergipark.org.tr/en/pub/epess/issue/30752/332916
Althaus, M. T. M., & Godoy, M. T. (2008). Lessons to pilot classes: interfaces between didatics and supervised training in biology. Olhar de Professor, 11(2), 295–311. doi: 10.5212/OlharProfr.v.11i2.295311
Andrade, M. L. F. de, & Massabni, V. G. (2011). Practical activities development : a challenge to science teachers. Ciência & Educação, 17(4), 835–854. doi: 10.1590/S1516-73132011000400005
Antunes, C. (2002). Avaliação da Aprendizagem Escolar (4° ed.; Vozes, Ed.). Rio de Janeiro: Vozes.
Batistela, G. C., Rodrigues, S. A., & Bononi, J. T. C. M. (2009). Estudo sobre a evassão escolar usando regressão logística: análise dos alunos do curso de administração da Fundação Educacional de Ituverava. Tekhne e Logos, 1(1), 103–120.
Boff, R. J. (2010). Administração do Tempo. InterLink, 1(1), 59–74.
Campos, C. R., Jacobini, O. R., Wodewotzki, M. L. L., & Ferreira, D. H. L. (2011). Educação Estatística no Contexto da Educação Crítica. BOLEMA, 24(39), 473–494. Retrieved from http://www.periodicos.rc.biblioteca.unesp.br/index.php/bolema/article/view/5104
Chuieire, M. S. F. (2008). Concepções sobre a Avaliação Escolar. Estudos Em Avaliação Educacional, 19(39), 49. doi: 10.18222/eae193920082469
Cordeiro, G. M. (2004). On Pearson’s residuals in generalized linear models. Statistics & Probability Letters, 66(3), 213–219. doi: 10.1016/j.spl.2003.09.004
Daguplo, M. S. (2017). Binary Logistic Predictive Model in Determining Students’ Intention to Take Higher Education. Asia Pacific Journal of Multidisciplinary Research, 5(4), 138–143. Retrieved from http://www.apjmr.com/wp-content/uploads/2017/12/APJMR-2017.5.4.17.pdff3d351f6db0140be97b35f1e5945a3c8&site=eds-live&scope=site
Dal’Igna, M. C. (2007). Desempenho escolar de meninos e meninas: há diferença? Educação Em Revista, (46), 241–267. doi: 10.1590/S0102-46982007000200010
De Dios Jiménez, J., & Salas-Velasco, M. (2000). Modeling educational choices. A binomial logit model applied to the demand for Higher Education. Higher Education, 40(3), 293–311. doi: 10.1023/A:1004098300436
de Menezes, F. S., Liska, G. R., Cirillo, M. A., & Vivanco, M. J. F. (2017). Data classification with binary response through the Boosting algorithm and logistic regression. Expert Systems with Applications, 69, 62–73. doi: 10.1016/j.eswa.2016.08.014
De Oliveira Mendonça, L., & Lopes, C. E. (2011). Mathematical Modeling: A learning environment for the implementation of Statistics Education in High School. Bolema - Mathematics Education Bulletin, 24(40), 701–724. Retrieved from http://www.periodicos.rc.biblioteca.unesp.br/index.php/bolema/article/view/5290
Emiliano, P. C., Vivanco, M. J. F., & de Menezes, F. S. (2014). Information criteria: How do they behave in different models? Computational Statistics & Data Analysis, 69, 141–153. doi: 10.1016/j.csda.2013.07.032
Eratlı Şirin, Y., & Şahin, M. (2020). Investigation of Factors Affecting the Achievement of University Students with Logistic Regression Analysis: School of Physical Education and Sport Example. SAGE Open, 10(1). doi: 10.1177/2158244020902082
Favéro, L. P., Belfiore, P., Da Silva, F. L., & Chan, B. L. (2009). Análise de dados: modelagem multivariada para a tomada de decisões (Elsevier, Ed.). Rio de Janeiro: Elsevier.
Ferrão, M. E., & Almeida, L. S. (2018). Multilevel modeling of persistence in higher education. Ensaio, 26(100), 664–683. doi: 10.1590/S0104-40362018002601610
Formiga, N. S. (2004). Atribuição de causalidade e rendimento acadêmico: Predição e diferença em alunos da universidade pública e privada. Revista de Psicologia Da UNC, 2(1), 3–14.
Freire, P. (1997). Pedagogia da Autonomia: Saberes nescessários à prática educativa. In P. & Terra (Ed.), Paz e terra (58th ed.). São Paulo: Paz & Terra.
Giannini, S. P. P., Latorre, M. do R. D. de O., & Ferreira, L. P. (2012). Distúrbio de voz e estresse no trabalho docente: um estudo caso-controle. Cadernos de Saúde Pública, 28(11), 2115–2124. doi: 10.1590/S0102-311X2012001100011
Giannini, S. P. P., Latorre, M. do R. D. de O., & Ferreira, L. P. (2013). Distúrbio de voz relacionado ao trabalho docente:um estudo caso-controle. Brazilian Journal of Otorhinolaryngology, 3(1), 129–134.
Gilberto, P. A. (1995). Influence and residuals in restricte generalized linear models. Journal of Statistical Computation and Simulation, 51(2–4), 315–331. doi: 10.1080/00949659508811640
Guney, Y. (2009). Exogenous and endogenous factors influencing students’ performance in undergraduate accounting modules. Accounting Education, 18(1), 51–73. doi: 10.1080/09639280701740142
Hosmer, D. W., Lemeshow, S., & Sturdivant, R. X. (2013). Applied Logistic Regression. In Wiley series in probability and statistics CN - QA278.2 .H67 2013 (3rd ed.). doi: 10.1002/9781118548387
Jacobini, O. R., & Wodewotzki, M. L. L. (2001). A Modelagem Matemática Aplicada no Ensino de Estatística em Cursos de Graduação. Bolema - Boletim de Educação Matemática, 14(15), 47–68.
Köche, J. C. (2011). Fundamentos de metodologia científica : teoria da ciência e iniciação à pesquisa. Petrópolis: Vozes.
Kraemer, M. E. P. (2005). A avaliação da aprendizagem como processo construtivo de um novo fazer. Avaliação: Revista Da Avaliação Da Educação Superior, 10(2), 137–147.
Leite, R. C. M., Guimarães, E. C., Lima, E. A. P. de, Barrozo, M. A. de S., & Tavares, M. (2011). Utilização de regressão logística simples na verificação da qualidade do ar atmosférico de Uberlândia. Engenharia Sanitaria e Ambiental, 16(2), 175–180. doi: 10.1590/S1413-41522011000200011
Lima, N. da C. M., Casela, A. L. M., Ribeiro, L. V. F., & Rezende, W. (2019). Associação do índice de atitudes e práticas pedagógicas ao desempenho dos estudantes na avaliação em larga escala do estado do Espírito Santo. Educação Em Revista, 35. doi: 10.1590/0102-4698198087
Liska, G. R., Cirillo, M. Â., de Menezes, F. S., & Bueno Filho, J. S. de S. (2019). Machine learning based on extended generalized linear model applied in mixture experiments. Communications in Statistics - Simulation and Computation, 1–15. doi: 10.1080/03610918.2019.1697821
Magalhães, F. A. C., & Andrade, J. Xi. (2006). Exame vestibular, características demográficas e desempenho na universidade: em busca de fatores preditivos. Congresso USP de Controladoria e Contabilidade, 1–11.
Mazulo, E. S. (2015). Análise da proficiência em matemática por meio de regressão linear múltipla. Revista Intersaberes, 10(21), 613–625. doi: 10.22169/revint.v10i21.664
McCulloch, C. E., Searle, S. R., & Neuhaus, J. M. (2009). Generalized, Linear, and Mixed Models. John Wiley Sonc Inc.
Moral, R. A., Hinde, J., & Demétrio, C. G. B. (2017). Half-Normal Plots and Overdispersed Models in R : The hnp Package . Journal of Statistical Software, 81(10). doi: 10.18637/jss.v081.i10
Niu, L. (2020). A review of the application of logistic regression in educational research: common issues, implications, and suggestions. Educational Review, 72(1), 41–67. doi: 10.1080/00131911.2018.1483892
Peng, C.-Y. J., Lee, K. L., & Ingersoll, G. M. (2002). An Introduction to Logistic Regression Analysis and Reporting. The Journal of Educational Research, 96(1), 3–14. doi: 10.1080/00220670209598786
Pyke, S. W. ., & Sheridan, P. M. . (1993). Logistic Regression Analysis of Graduate Student Retention. The Canadian Journal of Higher Education, 23(2), 44–64. Retrieved from https://journals.sfu.ca/cjhe/index.php/cjhe/article/view/183161
RStudio Team. (2015). RStudio: Integrated Development for R. Retrieved from http://www.rstudio.com/
Sio Jyh Lih, J., & Ismail, R. Bin. (2019). Binary Logistic Regression Analysis of Teacher Self-Efficacy Factors Influencing Literacy and Numeracy. World Journal of Education, 9(1), 209. doi: 10.5430/wje.v9n1p209
R Core Team (2017). R: A language and environment for statistical computing . Retrieved from http://www.r-project.org/
Viseu, F., Menezes, L., Fernandes, J. A., Gomes, A., & Martins, P. M. (2017). Conceções de Professores do Ensino Básico sobre a Prova Matemática: influência da experiência profissional. Bolema: Boletim de Educação Matemática, 31(57), 430–453. doi: 10.1590/1980-4415v31n57a21
Vizzotto, P. A., & Mackedanz, L. F. (2018). Validação De Instrumento De Avaliação Da Alfabetização Científica Para Egressos Do Ensino Médio No Contexto Da Física Do Trânsito. Educação Em Revista, 34(0). doi: 10.1590/0102-4698202974
Wild, C. J., & Pfannkuch, M. (1999). Statistical thinking in empirical enquiry. International Statistical Review, 67(3), 223–248. doi: 10.1111/j.1751-5823.1999.tb00442.x
Yin, R. K. (2001). Estudo de caso: planejamento e métodos (2nd ed.). Porto Alegre: Bookman.
Zanon, C., Hutz, C. S., Yoo, H., & Hambleton, R. K. (2016). An application of item response theory to psychological test development. Psicologia: Reflexao e Critica, 29(1). doi: 10.1186/s41155-016-0040-x
Zanon, D. P., Althaus, M. T. M., & Bagio, V. A. (2018). Didática na docência universitária em Saúde: metodologias ativas e avaliação (1st ed.). Retrieved from https://www.editoraappris.com.br/produto/737-didtica-na-docncia-universitria-em-sade-metodologias-ativas-e-avaliao
Zewude, B. T., & Ashine, K. M. (2016). Binary Logistic Regression Analysis in Assessment and Identifying Factors That Influence Students ’ Academic Achievement : The Case of College of Natural and Computational. Journal of Education and Practice, 7(25), 1–6. Retrieved from https://eric.ed.gov/?id=EJ1115855
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Esttefani Duarte Brum; Gilberto Rodrigues Liska; Alisson Darós Santos
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.