Antimicrobial and cytotoxic activity of fungal mycelial extracts from aquatic environments in the Amazon




Antifungal activity; Cytotoxicity; Bioactive metabolites.


Fungi are a prolific source of biologically active metabolites, including a wide range of clinically important drugs. Therefore, this study aims to evaluate the antimicrobial and cytotoxic activity of secondary metabolites extracted from fungal mycelia isolated from freshwater samples in the state of Amazonas. Mycelial extracts from 12 fungal were used, extracted with MeOH/AcOEt (1:1) according to the criteria established by Souza et al. (2004). For antimicrobial activity, the extracts were tested against the pathogens Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Enterococcus feacalis, Candida albicans and C. tropicalis. To identify the minimum inhibitory dosage (MID) the microdilution method was used. To perform the cytotoxicity assay, the VERO strain (ATCC® CCL-81TM) was used. The assays were determined by the Alamar Blue method according to Ahmed et al. (1994). The tested extracts did not show antibacterial activity. Five extracts (41.7%), obtained from the fungi Aspergillus - 1283, Chrysoporther - 1169, Diaporther – 1203, Fusarium – 1085, and Trichoderma, showed antifungal activity against C. albicans. Diaporther extract (8.3%) - 1203 was active against C. tropicalis.  In the cytotoxicity assay, 58.3% of the evaluated extracts showed no significant toxic effect. Five extracts, Cladosporium - 1135, Chrysoporther - 1169, Cytospora - 1098, Fusarium - 1085, and Talaromyces - 1244, showed cytotoxic potential, exhibiting viability lower than 70%. The results obtained suggest that mycelial extracts of fungi isolated from water samples from the Amazon region have potential against yeasts of medical interest. Only two of the active extracts were revealed potentially cytotoxic.


Ahmed, S. A., Gogal Jr, R. M., & Walsh, J. E. (1994). A new rapid and simple non-radioactive assay to monitor and determine the proliferation of lymphocytes: an alternative to [3H] thymidine incorporation assay. Journal of Immunological Methods, 170(2), 211-224.

Arastehfar, A., Daneshnia, F., Hafez, A., Khodavaisy, S., Najafzadeh, M. J., Charsizadeh, A., … & Boekhout, T. (2020). Antifungal susceptibility, genotyping, resistance mechanism, and clinical profile of Candida tropicalis blood isolates. Medical Mycology, 58(6), 766-773.

Atanasov, A. G., Zotchev, S. B., Dirsch, V. M., & Supuran, C. T. (2021). Natural products in drug discovery: Advances and opportunities. Nature Reviews Drug Discovery, 20(3), 200-216.

Ayoub, I. M., El-Shazly, M., Lu, M. C., & Singab, A. N. B. (2014). Antimicrobial and cytotoxic activities of the crude extracts of Dietes bicolor leaves, flowers and rhizomes. South African Journal of Botany, 95, 97-101.

Bracarense, A. A., & Takahashi, J. A. (2014). Modulation of antimicrobial metabolites production by the fungus Aspergillus parasiticus. Brazilian Journal of Microbiology, 45(1), 313-321.

Canela, H. M. S., Cardoso, B., Frazão, M. R., Falcão, J. P., Vitali, L. H., Martinez, R., & da Silva Ferreira, M. E. (2021). Genetic diversity assessed using PFGE, MLP and MLST in Candida spp. candidemia isolates obtained from a Brazilian hospital. Brazilian Journal of Microbiology, 52(2), 503-516.

Clinical and Laboratory Standards Institute (CLSI). (2002). Reference method for broth dilution antifungal susceptibility testing of yeasts: approved standard-second edition. CLSI documents M27–A2. CLSI, Wayne.

Clinical and Laboratory Standards Institute (CLSI). (2003). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: Approved Standard—Sixth Edition.

Clinical and Laboratory Standards Institute (CLSI). (2012). Performance standards for antimicrobial susceptibility testing, Twenty second Informational Supplement. CLSI document M100-S22. Wayne, PA.

Davies, J., & Davies, D. (2010). Origins and evolution of antibiotic resistance. Microbiology and Molecular Biology Reviews, 74(3), 417-433.

De Barros, P. P., Rossoni, R. D., Freire, F., Ribeiro, F. D. C., Lopes, L. A. D. C., Junqueira, J. C., & Jorge, A. O. C. (2018). Candida tropicalis affects the virulence profile of Candida albicans: an in vitro and in vivo study. Pathogens and Disease, 76(2), fty014.

De Medeiros, A. G., Savi, D. C., Mitra, P., Shaaban, K. A., Jha, A. K., Thorson, J. S., ... & Glienke, C. (2018). Bioprospecting of Diaporthe terebinthifolii LGMF907 for antimicrobial compounds. Folia Microbiologica, 63(4), 499-505.

Dos Reis, C. M., da Rosa, B. V., da Rosa, G. P., do Carmo, G., Morandini, L. M. B., Ugalde, G. A., ... & Kuhn, R. C. (2019). Antifungal and antibacterial activity of extracts produced from Diaporthe schini. Journal of Biotechnology, 294, 30-37.

Flores, A. C., Pamphile, J. A., Sarragiotto, M. H., & Clemente, E. (2013). Production of 3-nitropropionic acid by endophytic fungus Phomopsis longicolla isolated from Trichilia elegans A. JUSS ssp. elegans and evaluation of biological activity. World Journal of Microbiology and Biotechnology, 29(5), 923-932.

Harvey, A. L., Edrada-Ebel, R., & Quinn, R. J. (2015). The re-emergence of natural products for drug discovery in the genomics era. Nature Reviews Drug Discovery, 14(2), 111-129.

Heo, I., Hong, K., Yang, H., Lee, H. B., Choi, Y. J., & Hong, S. B. (2019). Diversity of Aspergillus, Penicillium, and Talaromyces species isolated from freshwater environments in Korea. Mycobiology, 47(1), 12-19.

Hoeksma, J., Misset, T., Wever, C., Kemmink, J., Kruijtzer, J., Versluis, K., ... & den Hertog, J. (2019). A new perspective on fungal metabolites: identification of bioactive compounds from fungi using zebrafish embryogenesis as read-out. Scientific Reports, 9(1), 1-16.

International Organization for Standardization (ISO), UNI EN ISO 10993-5:2009, (2009) “Biological Evaluation of Medical Devices—Part 5: In Vitro Cytotoxicity Testing”, International Organization for Standardization, Geneva, Switzerland.

Kholoujini, M., Shams-Ghahfarokhi, M., Ghiasian, S. A., & Razzaghi-Abyaneh, M. (2019). Isolation and Evaluation of Antifungal Metabolites from Endophytic Fungi Against Some Pathogenic Fungi. Journal of Biochemical Technology, (2): 97-106.

Lotfy, M. M., Hassan, H. M., Hetta, M. H., El-Gendy, A. O., & Mohammed, R. (2018). Di-(2-ethylhexyl) Phthalate, a major bioactive metabolite with antimicrobial and cytotoxic activity isolated from River Nile derived fungus Aspergillus awamori. Beni-Suef University Journal of Basic and Applied Sciences, 7(3), 263-269.

Magwaza, N. M., Nxumalo, E. N., Mamba, B. B., & Msagati, T. A. (2017). The occurrence and diversity of waterborne fungi in African aquatic systems: their impact on water quality and human health. International Journal of Environmental Research and Public Health, 14(5), 546.

Megri, Y., Arastehfar, A., Boekhout, T., Daneshnia, F., Hörtnagl, C., Sartori, B., ... & Hamrioui, B. (2020). Candida tropicalis is the most prevalent yeast species causing candidemia in Algeria: the urgent need for antifungal stewardship and infection control measures. Antimicrobial Resistance & Infection Control, 9, 1-10.

Moreira, C. C., Luna, G. L. F., Soriano, B., Cavicchioli, R., Bogas, A. E. C., de Sousa, C. P., ... & Lacava, P. T. (2020). Leishmanicidal, cytotoxic, antimicrobial and enzymatic activities of Diaporthe species, a mangrove-isolated endophytic fungus. African Journal of Microbiology Research, 14(9), 516-524.

Nirma, C., Eparvier, V., & Stien, D. (2015). Reactivation of antibiosis in the entomogenous fungus Chrysoporthe sp. SNB-CN74. The Journal of Antibiotics, 68(9), 586-590.

Oliveira, J., Barreto, A., Silva, L., & Rhoden, S. (2021). Fungos, diversidade e prospecção no Brasil: Um recurso pouco explorado? Metodologias e Aprendizado, 4, 149-163.

Organização Pan-Americana da Saúde (OPAS). (2020). Resistência antimicrobiana OPAS/OMS|. Organização Pan-Americana da Saúde.

Perussi, J. R. (2007). Inativação fotodinâmica de microrganismos. Química Nova, 30(4), 988-994.

Premjanu, N., & Jaynthy, C. (2015). Identification and characterization of antimicrobial metabolite from an endophytic fungus, Colletotrichum gloeosporioides isolated from Lannea corammendalica. International Journal of Chem Tech Research, 7, 369-374.

Sakhri, A., Chaouche, N. K., Catania, M. R., Ritieni, A., & Santini, A. (2019). Chemical composition of Aspergillus creber extract and evaluation of its antimicrobial and antioxidant activities. Polish Journal of Microbiology, 68(3), 309.

Sanchez, S., & Demain, A. L. (2017). Bioactive products from fungi. In Food Bioactives (pp. 59-87). Springer, Cham.

Santos, I. P. D., Silva, L. C. N. D., Silva, M. V. D., Araújo, J. M. D., Cavalcanti, M. D. S., & Lima, V. L. D. M. (2015). Antibacterial activity of endophytic fungi from leaves of Indigofera suffruticosa Miller (Fabaceae). Frontiers in Microbiology, 6, 350.

Saravanakumar, K., Chelliah, R., Ramakrishnan, S. R., Kathiresan, K., Oh, D. H., & Wang, M. H. (2018). Antibacterial, and antioxidant potentials of non-cytotoxic extract of Trichoderma atroviride. Microbial Pathogenesis, 115, 338-342.

Sathi, Z. S., Rahman, M., Faruk, A. L., & Rashid, M. A. (2015). Antimicrobial susceptibility assessment of compound from Aspergillus fumigatus. African Journal of Biotechnology, 14(3), 167-170.

Sharma, C., & Chowdhary, A. (2017). Molecular bases of antifungal resistance in filamentous fungi. International Journal of Antimicrobial Agents, 50(5), 607-616.

Sibero, M. T., Igarashi, Y., Radjasa, O. K., Sabdono, A., Trianto, A., Zilda, D. S., & Wijaya, Y. J. (2019). Sponge-associated fungi from a mangrove habitat in Indonesia: species composition, antimicrobial activity, enzyme screening and bioactive profiling. International Aquatic Research, 11(2), 173-186.

Simões, M., Bennett, R. N., & Rosa, E. A. (2009). Understanding antimicrobial activities of phytochemicals against multidrug resistant bacteria and biofilms. Natural Product Reports, 26(6), 746-757.

Souza, A. Q. L. D., Souza, A. D. L. D., Astolfi Filho, S., Pinheiro, M. L. B., Sarquis, M. I. D. M., & Pereira, J. O. (2004). Atividade antimicrobiana de fungos endofíticos isolados de plantas tóxicas da amazônia: Palicourea longiflora (aubl.) rich e Strychnos cogens bentham. Acta Amazônica, 34(2), 185-195.

Wille, M. P., Guimarães, T., Furtado, G. H. C., & Colombo, A. L. (2013). Historical trends in the epidemiology of candidaemia: analysis of an 11-year period in a tertiary care hospital in Brazil. Memorias do Instituto Oswaldo Cruz, 108(3), 288-292.

Wurzbacher, C., Warthmann, N., Bourne, E. C., Attermeyer, K., Allgaier, M., Powell, J. R., ... & Monaghan, M. T. (2016). High habitat-specificity in fungal communities in oligo-mesotrophic, temperate Lake Stechlin (North-East Germany). MycoKeys, (16), 17-44.

Xu, L., Meng, W., Cao, C., Wang, J., Shan, W., & Wang, Q. (2015). Antibacterial and antifungal compounds from marine fungi. Marine Drugs, 13(6), 3479-3513.

Yenn, T. W., Ring, L. C., Nee, T. W., Khairuddean, M., Zakaria, L., & Ibrahim, D. (2017). Endophytic Diaporthe sp. ED2 produces a novel anti-candidal ketone derivative. Journal of Microbiology and Biotechnology, 27(6), 1065-1070.




How to Cite

OLIVEIRA, M. R. de .; SANTIAGO, S. R. S. da S. .; KATAK, R. de M. .; CAMARGO, M. R. M. .; BASTOS, I. dos S. .; ORLANDI, P. P. .; TADEI, W. P. .; SOUZA, A. D. L. de .; SOUZA, A. Q. L. de . Antimicrobial and cytotoxic activity of fungal mycelial extracts from aquatic environments in the Amazon . Research, Society and Development, [S. l.], v. 10, n. 10, p. e273101018795, 2021. DOI: 10.33448/rsd-v10i10.18795. Disponível em: Acesso em: 21 oct. 2021.



Agrarian and Biological Sciences