Covid-19 mRNA vaccines: a new window opens in the field of immunology

Authors

DOI:

https://doi.org/10.33448/rsd-v10i10.18818

Keywords:

Covid-19; Vaccines; mRNA; Antigens; Spike protein.

Abstract

Introduction: Messenger RNA (mRNA) technology is a platform that has been investigated for many years. The emergence of the Covid-19 pandemic forced scientists from all over the world to unite around the development of several vaccines, having bet on those that are considered conventional, that is, based on the virus itself, but inactivated, or on its fragments, cultivating them in the laboratory. Objective: To demonstrate the mechanism of action of mRNA vaccines against Covid-19. Methodology: This is a descriptive research of the integrative literature review type, which seeks evidence on mRNA vaccines against Covid-19. The search was conducted using PubMed, MEDLINE, Scielo, CDSR, Google Scholar, BVS and EBSCO databases, from 2015 to 2021. Results: The ANN approach is a very interesting and important fact, because these ANNs, identical to viral, are introduced into the cells of the human body's immune system, inducing them to produce parts of a protein that the virus also manufactures, called spike (S), easily identified through each of the tips that are already known in the Covid-19 virus images. Conclusion: This is just the beginning of a great technological revolution for the production of vaccines that may, in the future, fight several other viruses using this technology with different mRNA segments, providing the development of treatments for various diseases through the same principle of action.

References

Alwis, R., Chen, S., Gan, E.S. & Ooi, E.E. (2020). Impact of immune enhancement on Covid-19 polyclonal hyperimmuneglobulin therapy and vaccine development. EBioMedicine. 55 (102768), 1-7.

Amanat, F. & Krammer, F. (2020). SARS-CoV-2 Vaccines: Status Report. Immunity. 52 (4): 583-589.

Avorn, J. & Kesselheim, A. (2020). Regulatory Decision-making on COVID-19 Vaccines During a Public Health Emergency. JAMA. 324 (13), 1284-1285.

Barreto, M.C. & Vasconcelos, H. C. (2021). Como as nanopartículas nos defendem da COVID-19: entregas da vacina de RNAm diretamente às células. Açoriano Oriental, Açores Magazine, UAciência, 10-11.

Blakney, A. K., Yilmaz, G., McKay, P. F., Becer, C. R. & Shattock, R. J. (2018). Um tamanho não serve para todos: o efeito do comprimento da cadeia e densidade de carga de copolímeros à base de poli (etileno imina) na entrega de poliplexos de pDNA, mRNA e RepRNA. Biomacromoléculas. 19 (1), 2870–2879.

Blakney, A.K., McKay, P.F., Yus, B.I., Aldon, Y. & Shattock, R.J. (2019). De dentro para fora: otimização de formulações de nanopartículas lipídicas para complexação externa e entrega in vivo de saRNA. Gene Ther. 26 (1), 363–372.

Caddy, S. (2020). Developing a vaccine for covid-19. BMJ. 369 (1790), 1-2.

Dearlove, B., Lewitus E., Bai H., Li, Y., Reeves, D.B. & Joyce, M.G. (2020). A SARS-CoV-2 vaccine candidate would likely match all currently circulating strains. Evolutionary Biology. 117 (38), 23652-23662.

Espeseth, A.S., Cejas, P.J., Citron, M.P., Wang, D., DiStefano, D.J. & Callahan, C. (2020). As vacinas à base de nanopartículas lipídicas / mRNA modificadas que expressam variantes da proteína F do vírus sincicial respiratório são imunogênicas e protetoras em modelos de roedores de infecção por RSV. NPJ Vaccines. 5 (16).

Frederiksen, L.S.F., Zhang, Y., Foged, C. & Thakur, A. (2020). The Long Road Toward COVID-19 HerdImmunity: Vaccine Platform Technologies and Mass Immunization Strategies. Front Immunol. 11 (1817), 1-26. https://doi.org/10.3389/fimmu.2020.01817.

Frias, L. A., Gomez-Medina, S., Sanchez-Sampedro, L., Ljungberg, K., Ustav, M. & Liljestrom, P. (2018). Imunogenicidade e eficácia distintas de candidatos a vacinas baseadas em poxvírus contra o vírus Ebola que expressam proteínas GP e VP40. J Virol. 92 (1), 363-368.

Haq, E.U., Yu, J. & Guo, J. (2020). Frontiers in the COVID-19 vaccines development. Exp Hematol Oncol., 9 (24), 1-24. https://doi.org/10.1186/s40164-020-00180-4

Jackson, L. A., Anderson, E.J., Rouphael, N.G., Roberts, P.C., Makhene, M., Coler, R.N. & McCullough, M. P. (2020). An mRNA Vaccine against SARS-CoV-2: Preliminary Report. N Engl J Med. 383 (1), 1920-1931.

Kauffman, K. J., Dorkin, J. R., Yang, J. H., Heartlein, M. W., DeRosa, F. & Mir, F. F. (2015). Otimização de formulações de nanopartículas lipídicas para entrega de mRNA in vivo com projetos fatoriais fracionários e de triagem definitiva. Nano Lett. 15 (1), 7300–7306.

Lima, E.J.F., Almeida, A. M. & Kfouri, R. A. (2021). Vacinas para Covid-19: o estado da arte. Rev. Bras. Saúde Mater. Infant., 21 (1), 521-528. http://dx.doi.org/10.1590/1806-9304202100S100002

Lurie, N., Saville, M., Hatchett, R. & Halton J. (2020). Desenvolvimento de vacinas para Covid-19 em velocidade pandêmica. N Engl J Med. 382 (21): 1969-1973.

Marzi, A., Halfmann, P., Hill-Batorski, L., Feldmann, F., Shupert, W. L. & Neumann, G. (2015). Vacinas: Uma vacina contra o vírus ebola é protetora em primatas não humanos. Science. 348 (1), 439–442.

Mukherjee, R. (2020). Global efforts on vaccines for COVID-19: Since, sooner or later, we all will catch the coronavirus. J Biosci. 45 (68), 1-16.

Perez, P. M.Q.M, Frias, L. A., Oya, N. J., Blazquez, A.B. & Escribano-Romero, E. (2018). Uma vacina baseada em um vetor de Ancara do vírus vaccinia modificado que expressa as proteínas estruturais do vírus zika controla a replicação do vírus zika em camundongos. Sci Rep. 8 (1), 17385.

Ramaswamy, S., Tonnu, N., Tachikawa, K., Limphong, P., Vega, J. B. & Karmali, P. P. (2017). Entrega sistêmica de RNA mensageiro do fator IX para terapia de reposição de proteínas. Proc Natl Acad Sci USA. 114 (1), 1941–1950.

Rybakova, Y., Kowalski, P. S., Huang, Y., Gonzalez, J. T., Heartlein, M.W. & DeRosa, F. (2019). Entrega de mRNA para expressão terapêutica de anticorpo anti-HER2 in vivo. Mol Ther. 27 (1), 1415–1423.

Stadler, C.R., Bahr-Mahmud, H., Celik, L., Hebich, B., Roth, A.S. & Roth R. P. (2017). Eliminação de grandes tumores em camundongos por anticorpos biespecíficos codificados por mRNA. Nat Med. 23 (1), 815–817.

Published

09/08/2021

How to Cite

FIGUEIREDO, B. Q. de; RICARDO NETO, A. .; COURY, B. F.; ARAÚJO, C. Q. L. de .; QUEIROZ, J. de M.; SOUSA, K. K. de .; SOUSA, L. C. S.; SOUSA, L. M. S. de .; CAIXETA, L. F.; CYRINO, L. S.; PERES, M. L. A.; FERNANDES, S. R. Covid-19 mRNA vaccines: a new window opens in the field of immunology. Research, Society and Development, [S. l.], v. 10, n. 10, p. e246101018818, 2021. DOI: 10.33448/rsd-v10i10.18818. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/18818. Acesso em: 22 nov. 2024.

Issue

Section

Health Sciences