Effect of jaboticaba and pequi extracts on gene expression of antioxidant enzymes in C2C12 mouse muscle cells

Authors

DOI:

https://doi.org/10.33448/rsd-v10i10.18864

Keywords:

Antioxidant action; Messenger RNA; Phenolic compounds; Plant extracts; Oxidative stress; Cytotoxicity.

Abstract

Jaboticaba and pequi fruits contain bioactive compounds, such as polyphenols, which present antioxidant actions; however, the molecular mechanisms by which these effects are achieved are not fully elucidated. In the present study, mouse muscle cells (C2C12), induced or not by oxidative stress with hydrogen peroxide (H2O2), were treated with jaboticaba peel extract (JPE) and pequi aqueous extract (PAE) in order to evaluate their influence on expression of the following antioxidant enzymes: catalase (CAT), superoxide dismutase (SOD), glutathione s-transferase (GST) and glutathione peroxidase 1 (GPX1). Treatments with JPE (150 µg gallic acid equivalents mL-1 extract) and PAE (30 µg GAE mL-1 extract) increased CAT and GST mRNAs expression in muscle cells. In cells induced by oxidative stress with addition of H2O2, peroxide detoxification action attributed to the GST enzyme was verified. The extracts beneficial effects may be due to the synergistic activities of their various phenolic compounds and other constituents.

References

Aquilano, K., Baldelli, S., & Ciriolo, M.R. (2014). Glutathione: new roles in redox signaling for an old antioxidant. Frontiers in Pharmacology, 5, 196. https://doi.org/10.3389/fphar.2014.00196

ATCC. American Type Culture Collection. (2011). MTT Cell Proliferation Assay Instruction Guide. Components, 6597. 1–6. https://www.atcc.org/-/media/product-assets/documents/instruction-sheets/multicomponent-products/mtt-cell-proliferation-assay.pdf?rev=b028c9a0390841afa2b4599e604e9839&sc_lang=en

Bahja, J., & Dymond, M. K. (2021). Does membrane curvature elastic energy play a role in mediating oxidative stress in lipid membranes?. Free Radical Biology and Medicine, 171, 191–202. https://doi.org/10.1016/j.freeradbiomed.2021.05.021

Bahuguna, A., Khan, I., Bajpai, V. K., & Kang, S. C. (2017). MTT assay to evaluate the cytotoxic potential of a drug. Bangladesh Journal of Pharmacology, 12, https://doi.org/10.3329/bjp.v12i2.30892

Batista, A. G., Lenquiste, S. A., Cazarin, C. B. B., Silva, J. K., Luiz-Ferreira, A., Bogusz, S., Hantao, L. W., Souza, R. N., Augusto, F., Prado, M. A., & Maróstica, M. R. (2014). Intake of jaboticaba peel attenuates oxidative stress in tissues and reduces circulating saturated lipids of rats with high-fat diet-induced obesity, Journal of Functional Foods, 6, 450–461. https://doi.org/10.1016/J.JFF.2013.11.011

Batista, A. G., Silva-Maia, J. K., Mendonça, M. C. P., Soares, E. S., Lima, G. C., Bogusz Junior, S., Hofling, M. A. C., & Maróstica Júnior, M. R. (2018). Jaboticaba berry peel intake increases short chain fatty acids production and prevent hepatic steatosis in mice fed high-fat diet. Journal of Functional Foods, 48, 266–274. https://doi.org/10.1016/J.JFF.2018.07.020

Borges, L. L., Cardoso, C. E., & Silveira, D. (2014). Active compounds and medicinal properties of Myrciaria genus. Food Chemistry, 153, 224–233. https://doi.org/10.1016/j.foodchem.2013.12.064

Brand-Williams, W., Cuvelier, M.E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28, 25–30. https://doi.org/10.1016/S0023-6438(95)80008-5

Calloni, C., Dall, R., Soares, L., Siqueira, F., & Moura, S. (2018). Jaboticaba (Plinia trunciflora (O. Berg) Kausel) fruit reduces oxidative stress in human fibroblasts cells (MRC-5). Food Research International, 70, 15–22.

Chang, W. T., Chen, C. S., Cheng, M. C., Wu, M. F., Cheng, F. T., & Hsu, C. L. (2017). Effects of resveratrol, epigallocatechin gallate, and epicatechin on mitochondrial functions in C2C12 myotubes. Journal of Functional Foods, 35, 507–512. https://doi.org/10.1016/j.jff.2017.06.020

Dionísio, P. A., Amaral, J. D., & Rodrigues, C. M. P. (2021). Oxidative stress and regulated cell death in Parkinson’s disease. Ageing Research Reviews, 67, 101263. https://doi.org/10.1016/j.arr.2021.101263

Fernández-Iglesias, A., Quesada, H., Díaz, S., Pajuelo, D., Bladé, C., Arola, L., Salvadó, M. J., & Mulero, M. (2014). Combination of grape seed proanthocyanidin extract and docosahexaenoic acid-rich oil increases the hepatic detoxification by GST mediated GSH conjugation in a lipidic postprandial state. Food Chemistry, 165, 14–20. https://doi.org/10.1016/j.foodchem.2014.05.057

Gerhardt, T. E., & Silveira, D. T. (2009). Métodos de pesquisa. Porto Alegre, Brasil: UFRGS.

Gil, A. C. (2008). Métodos e técnicas de pesquisa social. 6. ed. São Paulo, Brasil: Atlas.

Gilliam, L. A. A., Moylan, J. S., Patterson, E. W., Smith, J. D., Wilson, A. S., Rabbani, Z., & Reid, M. B. (2012). Doxorubicin acts via mitochondrial ROS to stimulate catabolism in C2C12 myotubes. American Journal of Physiology-Cell Physiology, 302, 195–202. https://doi.org/10.1152/ajpcell.00217.2011

Goutzourelas, N., Stagos, D., Housmekeridou, A., Karapouliou, C., Kerasioti, E., Aligiannis, N., Skaltsounis, A. L., Spandidos, D. A., Tsatsakis, A. M., & Kouretas, D. (2015). Grape pomace extract exerts antioxidant effects through an increase in GCS levels and GST activity in muscle and endothelial cells. International Journal of Molecular Medicine, 36, 433–441. https://doi.org/10.3892/ijmm.2015.2246

Kaynar, H., Meral, M., Turhan, H., Keles, M., Celik, G., & Akcay F. (2005). Glutathione peroxidase, glutathione-S-transferase, catalase, xanthine oxidase, Cu–Zn superoxide dismutase activities, total glutathione, nitric oxide, and malondialdehyde levels in erythrocytes of patients with small cell and non-small cell lung cancer. Cancer Letters, 227, 133–139. https://doi.org/10.1016/J.CANLET.2004.12.005

Kerasioti, E., Stagos, D., Tzimi, A., & Kouretas, D. (2016). Increase in antioxidant activity by sheep/goat whey protein through nuclear factor-like 2 (Nrf2) is cell type dependent. Food and Chemical Toxicology, 97, 47–56. https://doi.org/10.1016/j.fct.2016.08.022

Khan, N., Mupparaju, S. P., Mintzopoulos, D., Kesarwani, M., Righi, V., Rahme, L. G., Swartz, H. M., & Tzika, A. A. (2008). Burn trauma in skeletal muscle results in oxidative stress as assessed by in vivo electron paramagnetic resonance. Molecular Medicine Reports, 1, 813–819. https://doi.org/10.3892/mmr-00000033

Khouri, J., Resck, I. S., Poças-Fonseca, M., Sousa, T. M. M., Pereira, L. O., Oliveira, A. B. B., & Grisolia, C. K. (2007). Anticlastogenic potential and antioxidant effects of an aqueous extract of pulp from the pequi tree (Caryocar brasiliense Camb). Genetics and Molecular Biology, 30, 442–448. https://doi.org/10.1590/S1415-47572007000300024

Leão, D. P., Franca, A. S., Oliveira, L. S., Bastos, R., & Coimbra, M. A. (2017). Physicochemical characterization, antioxidant capacity, total phenolic and proanthocyanidin content of flours prepared from pequi (Caryocar brasilense Camb.) fruit by-products. Food Chemistry, 225, 146–153. https://doi.org/10.1016/J.FOODCHEM.2017.01.027

Leite-Legatti, A. V., Batista, A. G., Dragano, N. R. V., Marques, A. C., Malta, L. G., Riccio, M. F., Eberlin, M. N., Machado, A. R. T., Carvalho-Silva, L. B., Ruiz, A. L. T. G., Carvalho, J. E., Pastore, G. M., & Maróstica Júnior, M. R. (2012). Jaboticaba peel: Antioxidant compounds, antiproliferative and antimutagenic activities. Food Research International, 49, 596–603. https://doi.org/10.1016/j.foodres.2012.07.044

Lenquiste, S. A., Marineli, R. S., Moraes, E. A., Dionísio, A. P., Brito, E. S., & Maróstica, M. R. (2015). Jaboticaba peel and jaboticaba peel aqueous extract shows in vitro and in vivo antioxidant properties in obesity model. Food Research International, 77, 162–170. https://doi.org/10.1016/j.foodres.2015.07.023

Livak, K. J., & Schmittgen, T. D. (2001). Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods, 25, 402–408. https://doi.org/10.1006/METH.2001.1262

Lu, J., & Holmgren, A. (2014). The thioredoxin antioxidant system. Free Radical Biology and Medicine, 66, 75–87. https://doi.org/10.1016/j.freeradbiomed.2013.07.036

Machado, M. T. C., Mello, B. C. B. S., & Hubinger, M. D. (2013). Study of alcoholic and aqueous extraction of pequi (Caryocar brasiliense Camb.) natural antioxidants and extracts concentration by nanofiltration. Journal of Food Engineering, 117, 450–457. https://doi.org/10.1016/j.jfoodeng.2012.12.007

Machado, M. T. C., Mello, B. C. B. S., & Hubinger, M. D. (2015). Evaluation of pequi (Caryocar Brasiliense Camb.) aqueous extract quality processed by membranes. Food and Bioproducts Processing, 95, 304–312. https://doi.org/10.1016/J.FBP.2014.10.013

Manach, C., Scalbert, A., Morand, C., Rémésy, C., & Jiménez, L. (2004). Polyphenols: food sources and bioavailability. The American Journal of Clinical Nutrition, 79, 727–747. https://doi.org/10.1093/ajcn/79.5.727

Mayer, B. K., & Falkinham, J. O. (1986). Superoxide dismutase activity of Mycobacterium avium, M. intracellulare, and M. scrofulaceum. Infection and Immunity, 53, 631–635.

McClung, J. M., Judge, A. R., Talbert, E. E., & Powers, S. K. (2009). Calpain-1 is required for hydrogen peroxide-induced myotube atrophy. American Journal of Physiology-Cell Physiology, 296, C363-C371. https://doi.org/10.1152/ajpcell.00497.2008

Mills, G. C. (1959). The purification and properties of Glutathione Peroxidade of erythrocytes. Journal of Biological Chemistry, 234, 502–506.

Mosmann, T. (1983). Rapid Colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assay. Journal of Immunological Methods, 65, 55–63. https://doi.org/10.1016/0022-1759(83)90303-4

Myburgh, K. H., Kruger, M. J., & Smith, C. (2012). Accelerated skeletal muscle recovery after in vivo polyphenol administration. Journal of Nutritional Biochemistry, 23, 1072–1079. https://doi.org/10.1016/j.jnutbio.2011.05.014

Neri-Numa, I. A., Sancho, R. A. S., Pereira, A. P. A., & Pastore, G. M. (2018). Small Brazilian wild fruits: Nutrients, bioactive compounds, health-promotion properties and commercial interest. Food Research International, 103, 345–360. https://doi.org/10.1016/j.foodres.2017.10.053

Ohta, Y., Kinugawa, S., Matsushima, S., Ono, T., Sobirin, M. A., Inoue, N., Yokota, T., Hirabayashi, K., & Tsutsui, H. (2011). Oxidative stress impairs insulin signal in skeletal muscle and causes insulin resistance in postinfarct heart failure. American Journal of Physiology-Heart and Circulatory Physiology, 300, 1637–1644. https://doi.org/10.1152/ajpheart.01185.2009

Oliveira, V. B., Yamada, L. T., Fagg, C. W., & Brandão, M. G. L. (2012). Native foods from Brazilian biodiversity as a source of bioactive compounds. Food Research International, 48, 170–179. https://doi.org/10.1016/j.foodres.2012.03.011

Panza, V. P., Diefenthaeler, F., Tamborindeguy, A. C., Camargo, C. Q., Moura, B. M., Brunetta, H. S., Sakugawa, R. L., Oliveira, M. V., Puel Ede, O., Nunes, E. A., & Silva, E. L. (2016). Effects of mate tea consumption on muscle strength and oxidative stress markers after eccentric exercise. British Journal of Nutrition, 115, 1370–1378. https://doi.org/10.1017/S000711451600043X

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. 1. ed. Santa Maria, Brasil: UFSM/NTE.

Plaza, M., Batista, A. G., Cazarin, C. B. B., Sandahl, M., Turner, C., Östman, E., & Maróstica Júnior, M. R. (2016). Characterization of antioxidant polyphenols from Myrciaria jaboticaba peel and their effects on glucose metabolism and antioxidant status: A pilot clinical study. Food Chemistry, 211, 185–197. https://doi.org/10.1016/j.foodchem.2016.04.142

Pinheiro, F. A., Okumura, L. L., Silva, A. F. S., Silva, J. G., Ferreira, L. R., Barcellos, E. S., & Fontes, E. A. F. (2018). Applicability of a Voltammetric Assay Based on the Electroreduction of Oxygen to Evaluate the Antioxidant Capacity of Pequi (Caryocar brasiliense Camb.) Pulp. Journal of the Brazilian Chemical Society, 29, 1653–1662. https://doi.org/10.21577/0103-5053.20180038

Pisoschi, A. M., Pop, A., Iordache, F., Stanca, L., Predoi, G., & Serban, A.I. (2021). Oxidative stress mitigation by antioxidants - An overview on their chemistry and influences on health status. European Journal of Medicinal Chemistry, 209, 112891. https://doi.org/10.1016/j.ejmech.2020.112891

Priftis, A., Goutzourelas, N., Halabalaki, M., Ntasi, G., Stagos, D., Amoutzias, G.D., Skaltsounis, L.A., & Kouretas, D. (2018). Effect of polyphenols from coffee and grape on gene expression in myoblasts. Mechanisms of Ageing and Development, 172, 115–122. https://doi.org/10.1016/j.mad.2017.11.015

Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant Activity Applying an Improved Abts Radical Cation Decolorization Assay. Free Radical Biology and Medicine, 26, 1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3

Roesler, R., Catharino, R. R., Malta, L.G., Eberlin, M. N., & Pastore, G. (2008). Antioxidant activity of Caryocar brasiliense (pequi) and characterization of components by electrospray ionization mass spectrometry. Food Chemistry, 110, 711–717. https://doi.org/10.1016/J.FOODCHEM.2008.02.048

Sá, L. Z. C. M., Castro, P. F. S., Lino, F. M. A., Bernardes, M. J. C., Viegas, J. C. J., Dinis, T. C. P., Santana, M. J., Romao, W., Vaz, B. G., Lião, L. M., Ghedine, P. C., Rocha, M. L., & Gil, E. S. (2014). Antioxidant potential and vasodilatory activity of fermented beverages of jaboticaba berry (Myrciaria jaboticaba). Journal of Functional Foods, 8, 169–179. https://doi.org/10.1016/j.jff.2014.03.009

Scalbert, A., Manach, C., Morand, C., Rémésy, C., & Jiménez, L. (2005). Dietary Polyphenols and the Prevention of Diseases. Critical Reviews in Food Science and Nutrition, 45, 287–306. https://doi.org/10.1080/1040869059096

Scartezzini, P., & Speroni, E. (2000). Review on some plants of Indian traditional medicine with antioxidant activity. Journal of Ethnopharmacology, 71, 23–43. https://doi.org/10.1016/S0378-8741(00)00213-0

Shih, P. H., Yeh, C. T., & Yen, G. C. (2007). Anthocyanins induce the activation of phase II enzymes through the antioxidant response element pathway against oxidative stress-induced apoptosis. Journal of Agricultural and Food Chemistry, 55, 9427–9435. https://doi.org/10.1021/jf071933i

Silva, P.I., Stringheta, P.C., Teof́ilo, R.F., & Oliveira, I.R.N. (2013). Parameter optimization for spray-drying microencapsulation of jaboticaba (Myrciaria jaboticaba) peel extracts using simultaneous analysis of responses. Journal of Food Engineering, 117, 538–544. https://doi.org/10.1016/j.jfoodeng.2012.08.039

Swain, T., & Hills, W. E. (1959). The phenolic constituents of Prunus domestica. I - The quantitative analysis of phenolic constituents. Journal of the Science of Food and Agriculture, 19, 63–68.

Tarone, A. G., Goupy, P., Ginies, C., Marostica Junior, M. R., & Dufour, C. (2021). Advanced characterization of polyphenols from Myrciaria jaboticaba peel and lipid protection in in vitro gastrointestinal digestion. Food Chemistry, 359129959. https://doi.org/10.1016/j.foodchem.2021.129959

Valko, M., Rhodes, C. J., Moncol, J., Izakovic, M., & Mazur, M. (2006). Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chemico-Biological Interactions, 160, 1–40. https://doi.org/10.1016/J.CBI.2005.12.009

Van Meerloo, J., Kaspers, G. J. L., & Cloos, J. (2011). Cell Sensitivity Assays: The MTT Assay. In: Cree IA, editor Cancer Cell Culture, 2th ed, New Jersey: Humana Press, 237–245. https://doi.org/10.1007/978-1-61779-080-5_20

Wataru, A., & Kunihiro, S. (2011). Oxidative stress and skeletal muscle dysfunction with aging. Current Aging Science, 4, 101–109. https://doi.org/10.2174/1874609811104020101

Xianyong, M., Dun, D., & Weidong, C. (2017). Inhibitors and Activators of SOD, GSH‐Px, and CAT. In: Enzyme Inhibitors and Activators, InTech, https://doi.org/10.5772/65936.

Yang, Y. M., Noh, K., Han, C.Y., & Kim, S.G. (2010). Transactivation of genes encoding for phase II enzymes and phase III transporters by phytochemical antioxidants. Molecules, 15, 6332–6348. https://doi.org/10.3390/molecules15096332

Yokota, T., Kinugawa, S., Hirabayashi, K., Matsushima, S., Inoue, N., Ohta, Y., Hamaguchi, S., Sobirin, T. O., Suga, T., Kuroda, S., Tanaka, S., Terasaki, F., Okita, K., & Tsutsui, H. (2009). Oxidative stress in skeletal muscle impairs mitochondrial respiration and limits exercise capacity in type 2 diabetic mice. American Journal of Physiology-Heart and Circulatory Physiology, 297, 1069–1077. https://doi.org/10.1152/ajpheart.00267.2009

Zhang, M., Zhang, H., Li, H., Lai, F., Li, X., Tang, Y., Min, T., & Wu, H. (2016). Antioxidant Mechanism of Betaine without Free Radical Scavenging Ability, Journal of Agricultural and Food Chemistry, 64, 7921–7930. https://doi.org/10.1021/acs.jafc.6b03592

Published

14/08/2021

How to Cite

FERREIRA, P. R.; PINHEIRO, F. de A. .; DUARTE, M. de S. .; SILVA, W. da .; REIS, N. R. dos .; MARQUES, D. B. D.; BASTOS, D. S. S.; FONTES, E. A. F. Effect of jaboticaba and pequi extracts on gene expression of antioxidant enzymes in C2C12 mouse muscle cells. Research, Society and Development, [S. l.], v. 10, n. 10, p. e375101018864, 2021. DOI: 10.33448/rsd-v10i10.18864. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/18864. Acesso em: 3 dec. 2021.

Issue

Section

Agrarian and Biological Sciences