Energy-dispersive spectroscopy for the quantitative determination of the major chemical elements in milk




Milk minerals; X-Ray spectrometry; Milk ashes; Milk analysis.


The present preliminary study aims at the rapid quantitative determination of the major chemical elements in the ashes of raw milk samples, using energy dispersive X-ray fluorescence spectrometry. The precision of the method was satisfactory (variation coefficient ≤ 5%). The mean values (in mmol·kg-1) obtained from the analysis of 32 raw milk samples showed good agreement with data from the Brazilian and international literature: K (26.1 ± 4.6), Ca (33.8 ± 3.7), P (28.4 ± 2.7), Na (21 ± 3.3) and Mg (4.7 ± 0.5). Residual Cl concentration (19.0 ± 3.3 mmol·kg-1) was lower than expected due to incineration losses. The results suggest a good application potential of the method for other dairy products.


Ali, M., Choudhury, T. R., Hossain, B., & Ali, M. P. (2014). Determination of traces of molybdenum and lead in foods by x-ray fluorescence spectrometry. SpringerPlus, 3(1), 1–9.

Bijl, E., van Valenberg, H. J. F., Huppertz, T., & van Hooijdonk, A. C. M. (2013). Protein, casein, and micellar salts in milk: Current content and historical perspectives. Journal of Dairy Science, 96(9), 5455–5464.

Broyard, C., & Gaucheron, F. (2015). Modifications of structures and functions of caseins: a scientific and technological challenge. Dairy Science and Technology, 95(6), 831–862.

Daly, K., Fenton, O., Ashekuzzaman, S. M., & Fenelon, A. (2019). Characterisation of dairy processing sludge using energy dispersive X-ray fluorescence spectroscopy. Process Safety and Environmental Protection, 127, 206–210.

De La Fuente, M. A., Carazo, B., & Juárez, M. (1997). Determination of Major Minerals in Dairy Products Digested in Closed Vessels Using Microwave Heating. Journal of Dairy Science, 80(5), 806–811.

Do Nascimento, I. R., Jesus, R. M., dos Santos, W. N. L., Souza, A. S., Fragoso, W. D., & dos Reis, P. S. (2010). Determination of the mineral composition of fresh bovine milk from the milk-producing areas located in the State of Sergipe in Brazil and evaluation employing exploratory analysis. Microchemical Journal, 96(1), 37–41.

Garratt-Reed, A. J., & Bell, C. D. (2005). Energy-dispersive X-ray microanalysis in the scanning electron microscope. In Energy-Dispersive X-Ray Analysis in the Electron Microscope (p. 163). Taylor & Francis.

Gaucheron, F. (2005). The minerals of milk. Reproduction Nutrition Development, 45, 473–483.

Habib-Ur-Rehman, S., Rehana, I., & Yawar, W. (2012). Determination of inorganic elements in milk powder using wavelength dispersive X-ray fluorescence spectrometer. International Journal of Dairy Technology, 65(1), 98–103.

McCarthy, W. P., Daly, K., Fenelon, A., O’Connor, C., McCarthy, N. A., Hogan, S. A., Tobin, J. T., & O’Callaghan, T. F. (2020). Energy-dispersive X-ray fluorescence spectrometry as a tool for the rapid determination of the five major minerals (Na, Mg, K, P and Ca) in skim milk powder. International Journal of Dairy Technology, 73(2), 459–467.

Papachristodoulou, C., Tsiamou, M. C., Sakkas, H., & Papadopoulou, C. (2018). Determination of minerals in infant milk formulae by energy dispersive X-ray fluorescence spectrometry. Journal of Food Composition and Analysis, 72(June), 39–47.

Porcher, C., & Chevallier, A. (1923). La répartition des matières salines dans le lait. Leurs relations physiques et chimiques avec les autres principes du lait. Le Lait, 3(2), 97–112.

Rogers, L. A. (1935). Composition of milk and milk products. In Fundamentals of Dairy Science (2nd ed., pp. 15–47). Reinhold Publishing Corporation.

Sanders, G. P. (1939). The Determination of Chloride in Milk. Journal of Dairy Science, 22(10), 841–852.

Soares, V. A., Kus, M. M. M., Peixoto, A. L. C., Carrocci, J. S., Salazar, R. F. S., & Izário Filho, H. J. (2010). Determination of nutritional and toxic elements in pasteurized bovine milk from Vale do Paraiba region (Brazil). Food Control, 21(1), 45–49.

Souza, S. O., Santos, V. S., Santos, E. S., Ávila, D. V. L., Nascimento, C. C., Costa, S. S. L., Garcia, C. A. B., & Araujo, R. G. O. (2018). Evaluation of the mineral content in milk and yogurt types using chemometric tools. Microchemical Journal, 143, 1–8.

Soyeurt, H., Bruwier, D., Romnee, J. M., Gengler, N., Bertozzi, C., Veselko, D., & Dardenne, P. (2009). Potential estimation of major mineral contents in cow milk using mid-infrared spectrometry. Journal of Dairy Science, 92(6), 2444–2454.

Sögüt, Ö., Bali, T., Baltas, H. & Apaydin, G. (2013). Determination of trace elements in ashes of milk samples by using XRF technique. Asian Journal of Chemistry, 25(8),4385-4388.

Stocco,G., Summer, A., Cipolat-Gotet,C., Malacarne, M., Cecchinato, A., Amalfitano, N., & Bittante, G. (2021). The mineral profile affects the coagulation pattern and cheese-making efficiency of bovine milk. Journal of Dairy Science, 104,

Töpel, A. (1981). Milchsalze. In Chemie und Physik der Milch (pp. 194–208). VEB Fachbuchverlag Leipzig, Germany.




How to Cite

PAULA, I. L. de .; RENHE, I. R. T. .; STEPHANI, R. .; PERRONE, Ítalo T. .; CARVALHO, A. F. de .; POMBO, A. W. . Energy-dispersive spectroscopy for the quantitative determination of the major chemical elements in milk . Research, Society and Development, [S. l.], v. 10, n. 10, p. e280101018910, 2021. DOI: 10.33448/rsd-v10i10.18910. Disponível em: Acesso em: 27 oct. 2021.



Agrarian and Biological Sciences