Alkaline pretreatment and enzymatic hydrolysis of corn stover for bioethanol production
DOI:
https://doi.org/10.33448/rsd-v10i11.18914Keywords:
Lignocellulosic residue.; Corn stover; Pretreatment; Hydrolysis; Fermentation; Biofuel.Abstract
The demand for ethanol in Brazil is growing. However, although the country is one of the largest producers of this fuel, it is still necessary to diversify the production matrix. In that regard, studies with different raw materials are needed, mainly the use of low cost and high available wastes such as lignocellulosic residues from agriculture. Therefore, this study aimed to analyze the bioethanol production from corn stover. An alkaline pretreatment (CaO) was carried out, followed by enzymatic hydrolysis (Cellic Ctec2 and Cellic Htec2) to obtain fermentable sugars. The best experimental condition for the pretreatment and hydrolysis steps resulted in a solution with 0.31 gsugar∙gbiomass-1. Then, the fermentation was performed by the industrial strain of Saccharomyces cerevisiae (PE-2) and by the wild yeast strain Wickerhamomyces sp. (UFFS-CE-3.1.2). The yield obtained was 0.38 gethanol∙gdry biomass-1 was, demonstrating the potential of this process for bioethanol production.
References
Akram, F., Haq, I. ul, Imran, W., & Mukhtar, H. (2018). Insight perspectives of thermostable endoglucanases for bioethanol production: A review. Renewable Energy, 122, 225–238. https://doi.org/10.1016/j.renene.2018.01.095
Amer, M. W., Aljariri Alhesan, J. S., Ibrahim, S., Qussay, G., Marshall, M., & Al-Ayed, O. S. (2021). Potential use of corn leaf waste for biofuel production in Jordan (physio-chemical study). Energy, 214, 118863. https://doi.org/10.1016/j.energy.2020.118863
Bak, J. S., Ko, J. K., Han, Y. H., Lee, B. C., Choi, I. G., & Kim, K. H. (2009). Improved enzymatic hydrolysis yield of rice straw using electron beam irradiation pretreatment. Bioresource Technology, 100(3), 1285–1290. https://doi.org/10.1016/j.biortech.2008.09.010
Barrilli, É. T., Tadioto, V., Milani, L. M., Deoti, J. R., Fogolari, O., Müller, C., Barros, K. O., Rosa, C. A., dos Santos, A. A., Stambuk, B. U., Treichel, H., & Alves, S. L. (2020). Biochemical analysis of cellobiose catabolism in Candida pseudointermedia strains isolated from rotten wood. Archives of Microbiology, 202(7), 1729–1739. https://doi.org/10.1007/s00203-020-01884-1
Basso, L. C., Amorim, H. V. de, Oliveira, A. J. de, & Lopes, M. L. (2008). Yeast selection for fuel ethanol production in Brazil _ Enhanced Reader.pdf. https://doi.org/10.1111/j.1567-1364.2008.00428.x
Bazoti, S. F., Golunski, S., Pereira Siqueira, D., Scapini, T., Barrilli, É. T., Alex Mayer, D., Barros, K. O., Rosa, C. A., Stambuk, B. U., Alves, S. L., Valério, A., de Oliveira, D., & Treichel, H. (2017). Second-generation ethanol from non-detoxified sugarcane hydrolysate by a rotting wood isolated yeast strain. Bioresource Technology, 244(August), 582–587. https://doi.org/10.1016/j.biortech.2017.08.007
Bellissimi, E., Van Dijken, J. P., Pronk, J. T., & Van Maris, A. J. A. (2009). Effects of acetic acid on the kinetics of xylose fermentation by an engineered, xylose-isomerase-based saccharomyces cerevisiae strain. FEMS Yeast Research, 9(3), 358–364. https://doi.org/10.1111/j.1567-1364.2009.00487.x
Bonatto, C., Venturin, B., Mayer, D. A., Bazoti, S. F., de Oliveira, D., Alves, S. L., & Treichel, H. (2020). Experimental data and modelling of 2G ethanol production by Wickerhamomyces sp. UFFS-CE-3.1.2. Renewable Energy, 145, 2445–2450. https://doi.org/10.1016/j.renene.2019.08.010
Brandt, A., Gräsvik, J., Hallett, J. P., & Welton, T. (2013). Deconstruction of lignocellulosic biomass with ionic liquids. Green Chemistry, 15(3), 550–583. https://doi.org/10.1039/c2gc36364j
Brazilian Agricultural Research Corporation (EMBRAPA). (2021). Embrapa Milho e Sorgo. http://www.cnpms.embrapa.br/perguntas/colheita2.php
Cavali, M., Bueno, A., Fagundes, A. P., Priamo, W. L., Bilibio, D., Mibielli, G. M., Wancura, J. H. C., Bender, J. P., & Oliveira, J. V. (2020). Liquid lipase-mediated production of biodiesel from agroindustrial waste. Biocatalysis and Agricultural Biotechnology, 30(November). https://doi.org/10.1016/j.bcab.2020.101864
Cavali, M., Ricardo Soccol, C., Tavares, D., Alberto Zevallos Torres, L., Oliveira de Andrade Tanobe, V., Zandoná Filho, A., & Lorenci Woiciechowski, A. (2020). Effect of sequential acid-alkaline treatment on physical and chemical characteristics of lignin and cellulose from pine (Pinus spp.) residual sawdust. Bioresource Technology, 123884. https://doi.org/10.1016/j.biortech.2020.123884
Chang, V. S., Kaar, W. E., Burr, B., & Holtzapple, M. T. (2001). Simultaneous saccharification and fermentation of lime-treated biomass. Biotechnology Letters, 23(16), 1327–1333. https://doi.org/10.1023/A:1010594027988
Chen, S., Xu, Z., Li, X., Yu, J., Cai, M., & Jin, M. (2018). Integrated bioethanol production from mixtures of corn and corn stover. Bioresource Technology, 258(February), 18–25. https://doi.org/10.1016/j.biortech.2018.02.125
Cherubini, F., & Strømman, A. H. (2011). Principles of biorefining. Biofuels, 3–24. https://doi.org/10.1016/B978-0-12-385099-7.00001-2
Companhia Nacional de Abastecimento (CONAB). (2020). Acompanhamento da safra brasileira 2019/2020. In Acompanhamento da Safra Brasileira de Grãos 2019/2020 (Vol. 8).
Dayton, D. C., & Foust, T. D. (2020). Biomass Characterization. Analytical Methods for Biomass Characterization and Conversion, 19–35. https://doi.org/10.1016/b978-0-12-815605-6.00002-0
Iowa Corn Promotion Board. (2013). Sustainable Corn Stover Harvest. https://www.iowacorn.org/media/cms/IowaCornResearchBrochure_Final_IFT_F4B608A12ED16.pdf
Kaar, W. E., & Holtzapple, M. T. (2000). Using lime pretreatment to facilitate the enzymic hydrolysis of corn stover. Biomass and Bioenergy, 18(3), 189–199. https://doi.org/10.1016/S0961-9534(99)00091-4
Kim, J. H., Block, D. E., & Mills, D. A. (2010). Simultaneous consumption of pentose and hexose sugars: An optimal microbial phenotype for efficient fermentation of lignocellulosic biomass. Applied Microbiology and Biotechnology, 88(5), 1077–1085. https://doi.org/10.1007/s00253-010-2839-1
Krishnan, C., da Costa Sousa, L., Jin, M., Chang, L., Dale, B. E., & Balan, V. (2010). Alkali-based AFEX pretreatment for the conversion of sugarcane bagasse and cane leaf residues to ethanol. Biotechnology and Bioengineering, 107(3), 441–450. https://doi.org/10.1002/bit.22824
Lopes, D. D., Rosa, C. A., Hector, R. E., Dien, B. S., Mertens, J. A., & Ayub, M. A. Z. (2017). Influence of genetic background of engineered xylose-fermenting industrial Saccharomyces cerevisiae strains for ethanol production from lignocellulosic hydrolysates. Journal of Industrial Microbiology and Biotechnology, 44(11), 1575–1588. https://doi.org/10.1007/s10295-017-1979-z
Lopes, M. L., Paulillo, S. C. de L., Godoy, A., Cherubin, R. A., Lorenzi, M. S., Giometti, F. H. C., Bernardino, C. D., de Amorim Neto, H. B., & de Amorim, H. V. (2016). Ethanol production in Brazil: a bridge between science and industry. Brazilian Journal of Microbiology, 47, 64–76. https://doi.org/10.1016/j.bjm.2016.10.003
Lucaroni, A. C., JR., S. L. A., Giehl, A., Deoti, Let., & Tadioto, V. (2019). Análise Do Metabolismo De Xilose Por Uma Nova Espécie Do Gênero Wickerhamomyces Submetida a Diferentes Condições De Cultivo. Congresso Brasileiro de Engenharia Química Em Iniciação Científica, 287–293. https://doi.org/10.5151/cobecic2019-eat22
Mączyńska, J., Krzywonos, M., Kupczyk, A., Tucki, K., Sikora, M., Pińkowska, H., Bączyk, A., & Wielewska, I. (2019). Production and use of biofuels for transport in Poland and Brazil – The case of bioethanol. Fuel, 241(December 2018), 989–996. https://doi.org/10.1016/j.fuel.2018.12.116
Madadi, M., Tu, Y., & Abbas, A. (2017). Pretreatment of Lignocelollusic Biomass Based on Improving Enzymatic Hydrolysis. International Journal of Applied Sciences and Biotechnology, 5(1), 1–11. https://doi.org/10.3126/ijasbt.v5i1.17018
Mao, J. D., Holtman, K. M., & Franqui-Villanueva, D. (2010). Chemical structures of corn stover and its residue after dilute acid prehydrolysis and enzymatic hydrolysis: insight into factors limiting enzymatic hydrolysis. Journal of Agricultural and Food Chemistry, 58(22), 11680–11687. https://doi.org/10.1021/jf102514r
Mibielli, G. M., Fagundes, A. P., Bohn, L. R., Cavali, M., Bueno, A., Bender, J. P., & Oliveira, J. V. (2020). Enzymatic production of methyl esters from low-cost feedstocks. Biocatalysis and Agricultural Biotechnology, 24. https://doi.org/10.1016/j.bcab.2020.101558
Mussatto, S. I., & Dragone, G. M. (2016). Biomass Pretreatment, Biorefineries, and Potential Products for a Bioeconomy Development. Biomass Fractionation Technologies for a Lignocellulosic Feedstock Based Biorefinery, 1–22. https://doi.org/10.1016/B978-0-12-802323-5.00001-3
National Renewable Energy Laboratory. (2020). Biomass Compositional Analysis. https://www.nrel.gov/bioenergy/biomass-compositional-analysis.html
Novozymes. (2018). Cellic ® CTec2 and HTec2 - Enzymes for hydrolysis of lignocellulosic materials. 1–9.
Parawira, W., & Tekere, M. (2011). Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production: Review. Critical Reviews in Biotechnology, 31(1), 20–31. https://doi.org/10.3109/07388551003757816
Rabelo, Sarita C., Filho, R. M. I., & Costa, A. C. (2009). Lime pretreatment of sugarcane bagasse for bioethanol production. Applied Biochemistry and Biotechnology, 153(1–3), 139–150. https://doi.org/10.1007/s12010-008-8433-7
Rabelo, Sarita Cândida. (2010). Avaliação E Otimização De Pré-Tratamentos E Hidrólise Enzimática Do Bagaço De Cana-De-Açúcar Para a Produção De Etanol De Segunda Geração. http://www.repositorio.unicamp.br/handle/REPOSIP/266933
Robak, K., & Balcerek, M. (2020). Current state-of-the-art in ethanol production from lignocellulosic feedstocks. Microbiological Research, 240(June), 126534. https://doi.org/10.1016/j.micres.2020.126534
Ruan, Z., Wang, X., Liu, Y., Liao, W., States, U., & Estates, H. (2019). Corn. In Integrated Processing Technologies for Food and Agricultural By-Products (p. 14). https://doi.org/https://doi.org/10.1016/B978-0-12-814138-0.00003-4
Silveira, M. H. L., Morais, A. R. C., Da Costa Lopes, A. M., Olekszyszen, D. N., Bogel-Łukasik, R., Andreaus, J., & Pereira Ramos, L. (2015). Current Pretreatment Technologies for the Development of Cellulosic Ethanol and Biorefineries. ChemSusChem, 8(20), 3366–3390. https://doi.org/10.1002/cssc.201500282
Siqueira, L. N. de, Guarda, E. A., Guarda, P. M., Silva, R. B. R. da, & Barbosa, R. dos S. (2016). Rendimento de hidrólise e produção de etanol lignocelulósico a partir de biomassa de capim elefante. Journal of Bioenergy and Food Science, 3(4), 191–196. https://doi.org/10.18067/jbfs.v3i4.112
Steinbach, D., Kruse, A., & Sauer, J. (2017). Pretreatment technologies of lignocellulosic biomass in water in view of furfural and 5-hydroxymethylfurfural production- A review. Biomass Conversion and Biorefinery, 7(2), 247–274. https://doi.org/10.1007/s13399-017-0243-0
Talebnia, F., Karakashev, D., & Angelidaki, I. (2010). Production of bioethanol from wheat straw: An overview on pretreatment, hydrolysis and fermentation. Bioresource Technology, 101(13), 4744–4753. https://doi.org/10.1016/j.biortech.2009.11.080
Zhang, J., Kong, C., Yang, M., & Zang, L. (2020). Comparison of Calcium Oxide and Calcium Peroxide Pretreatments of Wheat Straw for Improving Biohydrogen Production. ACS Omega, 5, 9151–9161. https://doi.org/https://doi.org/10.1021/acsomega.9b04368
Zhao, C., Zou, Z., Li, J., Jia, H., Liesche, J., Chen, S., & Fang, H. (2018). Efficient bioethanol production from sodium hydroxide pretreated corn stover and rice straw in the context of on-site cellulase production. Renewable Energy, 118, 14–24. https://doi.org/10.1016/j.renene.2017.11.001
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Letícia Renata Bohn; Aline Perin Dresch; Matheus Cavali; Ana Carolina Giacomelli Vargas; Jaíne Flach Führ; Siumar Pedro Tironi; Odinei Fogolari; Guilherme Martinez Mibielli; Sérgio Luiz Alves Jr.; João Paulo Bender
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.