Alkaline pretreatment and enzymatic hydrolysis of corn stover for bioethanol production

Authors

DOI:

https://doi.org/10.33448/rsd-v10i11.18914

Keywords:

Lignocellulosic residue.; Corn stover; Pretreatment; Hydrolysis; Fermentation; Biofuel.

Abstract

The demand for ethanol in Brazil is growing. However, although the country is one of the largest producers of this fuel, it is still necessary to diversify the production matrix. In that regard, studies with different raw materials are needed, mainly the use of low cost and high available wastes such as lignocellulosic residues from agriculture. Therefore, this study aimed to analyze the bioethanol production from corn stover. An alkaline pretreatment (CaO) was carried out, followed by enzymatic hydrolysis (Cellic Ctec2 and Cellic Htec2) to obtain fermentable sugars. The best experimental condition for the pretreatment and hydrolysis steps resulted in a solution with 0.31 gsugar∙gbiomass-1. Then, the fermentation was performed by the industrial strain of Saccharomyces cerevisiae (PE-2) and by the wild yeast strain Wickerhamomyces sp. (UFFS-CE-3.1.2). The yield obtained was 0.38 gethanol∙gdry biomass-1 was, demonstrating the potential of this process for bioethanol production.

References

Akram, F., Haq, I. ul, Imran, W., & Mukhtar, H. (2018). Insight perspectives of thermostable endoglucanases for bioethanol production: A review. Renewable Energy, 122, 225–238. https://doi.org/10.1016/j.renene.2018.01.095

Amer, M. W., Aljariri Alhesan, J. S., Ibrahim, S., Qussay, G., Marshall, M., & Al-Ayed, O. S. (2021). Potential use of corn leaf waste for biofuel production in Jordan (physio-chemical study). Energy, 214, 118863. https://doi.org/10.1016/j.energy.2020.118863

Bak, J. S., Ko, J. K., Han, Y. H., Lee, B. C., Choi, I. G., & Kim, K. H. (2009). Improved enzymatic hydrolysis yield of rice straw using electron beam irradiation pretreatment. Bioresource Technology, 100(3), 1285–1290. https://doi.org/10.1016/j.biortech.2008.09.010

Barrilli, É. T., Tadioto, V., Milani, L. M., Deoti, J. R., Fogolari, O., Müller, C., Barros, K. O., Rosa, C. A., dos Santos, A. A., Stambuk, B. U., Treichel, H., & Alves, S. L. (2020). Biochemical analysis of cellobiose catabolism in Candida pseudointermedia strains isolated from rotten wood. Archives of Microbiology, 202(7), 1729–1739. https://doi.org/10.1007/s00203-020-01884-1

Basso, L. C., Amorim, H. V. de, Oliveira, A. J. de, & Lopes, M. L. (2008). Yeast selection for fuel ethanol production in Brazil _ Enhanced Reader.pdf. https://doi.org/10.1111/j.1567-1364.2008.00428.x

Bazoti, S. F., Golunski, S., Pereira Siqueira, D., Scapini, T., Barrilli, É. T., Alex Mayer, D., Barros, K. O., Rosa, C. A., Stambuk, B. U., Alves, S. L., Valério, A., de Oliveira, D., & Treichel, H. (2017). Second-generation ethanol from non-detoxified sugarcane hydrolysate by a rotting wood isolated yeast strain. Bioresource Technology, 244(August), 582–587. https://doi.org/10.1016/j.biortech.2017.08.007

Bellissimi, E., Van Dijken, J. P., Pronk, J. T., & Van Maris, A. J. A. (2009). Effects of acetic acid on the kinetics of xylose fermentation by an engineered, xylose-isomerase-based saccharomyces cerevisiae strain. FEMS Yeast Research, 9(3), 358–364. https://doi.org/10.1111/j.1567-1364.2009.00487.x

Bonatto, C., Venturin, B., Mayer, D. A., Bazoti, S. F., de Oliveira, D., Alves, S. L., & Treichel, H. (2020). Experimental data and modelling of 2G ethanol production by Wickerhamomyces sp. UFFS-CE-3.1.2. Renewable Energy, 145, 2445–2450. https://doi.org/10.1016/j.renene.2019.08.010

Brandt, A., Gräsvik, J., Hallett, J. P., & Welton, T. (2013). Deconstruction of lignocellulosic biomass with ionic liquids. Green Chemistry, 15(3), 550–583. https://doi.org/10.1039/c2gc36364j

Brazilian Agricultural Research Corporation (EMBRAPA). (2021). Embrapa Milho e Sorgo. http://www.cnpms.embrapa.br/perguntas/colheita2.php

Cavali, M., Bueno, A., Fagundes, A. P., Priamo, W. L., Bilibio, D., Mibielli, G. M., Wancura, J. H. C., Bender, J. P., & Oliveira, J. V. (2020). Liquid lipase-mediated production of biodiesel from agroindustrial waste. Biocatalysis and Agricultural Biotechnology, 30(November). https://doi.org/10.1016/j.bcab.2020.101864

Cavali, M., Ricardo Soccol, C., Tavares, D., Alberto Zevallos Torres, L., Oliveira de Andrade Tanobe, V., Zandoná Filho, A., & Lorenci Woiciechowski, A. (2020). Effect of sequential acid-alkaline treatment on physical and chemical characteristics of lignin and cellulose from pine (Pinus spp.) residual sawdust. Bioresource Technology, 123884. https://doi.org/10.1016/j.biortech.2020.123884

Chang, V. S., Kaar, W. E., Burr, B., & Holtzapple, M. T. (2001). Simultaneous saccharification and fermentation of lime-treated biomass. Biotechnology Letters, 23(16), 1327–1333. https://doi.org/10.1023/A:1010594027988

Chen, S., Xu, Z., Li, X., Yu, J., Cai, M., & Jin, M. (2018). Integrated bioethanol production from mixtures of corn and corn stover. Bioresource Technology, 258(February), 18–25. https://doi.org/10.1016/j.biortech.2018.02.125

Cherubini, F., & Strømman, A. H. (2011). Principles of biorefining. Biofuels, 3–24. https://doi.org/10.1016/B978-0-12-385099-7.00001-2

Companhia Nacional de Abastecimento (CONAB). (2020). Acompanhamento da safra brasileira 2019/2020. In Acompanhamento da Safra Brasileira de Grãos 2019/2020 (Vol. 8).

Dayton, D. C., & Foust, T. D. (2020). Biomass Characterization. Analytical Methods for Biomass Characterization and Conversion, 19–35. https://doi.org/10.1016/b978-0-12-815605-6.00002-0

Iowa Corn Promotion Board. (2013). Sustainable Corn Stover Harvest. https://www.iowacorn.org/media/cms/IowaCornResearchBrochure_Final_IFT_F4B608A12ED16.pdf

Kaar, W. E., & Holtzapple, M. T. (2000). Using lime pretreatment to facilitate the enzymic hydrolysis of corn stover. Biomass and Bioenergy, 18(3), 189–199. https://doi.org/10.1016/S0961-9534(99)00091-4

Kim, J. H., Block, D. E., & Mills, D. A. (2010). Simultaneous consumption of pentose and hexose sugars: An optimal microbial phenotype for efficient fermentation of lignocellulosic biomass. Applied Microbiology and Biotechnology, 88(5), 1077–1085. https://doi.org/10.1007/s00253-010-2839-1

Krishnan, C., da Costa Sousa, L., Jin, M., Chang, L., Dale, B. E., & Balan, V. (2010). Alkali-based AFEX pretreatment for the conversion of sugarcane bagasse and cane leaf residues to ethanol. Biotechnology and Bioengineering, 107(3), 441–450. https://doi.org/10.1002/bit.22824

Lopes, D. D., Rosa, C. A., Hector, R. E., Dien, B. S., Mertens, J. A., & Ayub, M. A. Z. (2017). Influence of genetic background of engineered xylose-fermenting industrial Saccharomyces cerevisiae strains for ethanol production from lignocellulosic hydrolysates. Journal of Industrial Microbiology and Biotechnology, 44(11), 1575–1588. https://doi.org/10.1007/s10295-017-1979-z

Lopes, M. L., Paulillo, S. C. de L., Godoy, A., Cherubin, R. A., Lorenzi, M. S., Giometti, F. H. C., Bernardino, C. D., de Amorim Neto, H. B., & de Amorim, H. V. (2016). Ethanol production in Brazil: a bridge between science and industry. Brazilian Journal of Microbiology, 47, 64–76. https://doi.org/10.1016/j.bjm.2016.10.003

Lucaroni, A. C., JR., S. L. A., Giehl, A., Deoti, Let., & Tadioto, V. (2019). Análise Do Metabolismo De Xilose Por Uma Nova Espécie Do Gênero Wickerhamomyces Submetida a Diferentes Condições De Cultivo. Congresso Brasileiro de Engenharia Química Em Iniciação Científica, 287–293. https://doi.org/10.5151/cobecic2019-eat22

Mączyńska, J., Krzywonos, M., Kupczyk, A., Tucki, K., Sikora, M., Pińkowska, H., Bączyk, A., & Wielewska, I. (2019). Production and use of biofuels for transport in Poland and Brazil – The case of bioethanol. Fuel, 241(December 2018), 989–996. https://doi.org/10.1016/j.fuel.2018.12.116

Madadi, M., Tu, Y., & Abbas, A. (2017). Pretreatment of Lignocelollusic Biomass Based on Improving Enzymatic Hydrolysis. International Journal of Applied Sciences and Biotechnology, 5(1), 1–11. https://doi.org/10.3126/ijasbt.v5i1.17018

Mao, J. D., Holtman, K. M., & Franqui-Villanueva, D. (2010). Chemical structures of corn stover and its residue after dilute acid prehydrolysis and enzymatic hydrolysis: insight into factors limiting enzymatic hydrolysis. Journal of Agricultural and Food Chemistry, 58(22), 11680–11687. https://doi.org/10.1021/jf102514r

Mibielli, G. M., Fagundes, A. P., Bohn, L. R., Cavali, M., Bueno, A., Bender, J. P., & Oliveira, J. V. (2020). Enzymatic production of methyl esters from low-cost feedstocks. Biocatalysis and Agricultural Biotechnology, 24. https://doi.org/10.1016/j.bcab.2020.101558

Mussatto, S. I., & Dragone, G. M. (2016). Biomass Pretreatment, Biorefineries, and Potential Products for a Bioeconomy Development. Biomass Fractionation Technologies for a Lignocellulosic Feedstock Based Biorefinery, 1–22. https://doi.org/10.1016/B978-0-12-802323-5.00001-3

National Renewable Energy Laboratory. (2020). Biomass Compositional Analysis. https://www.nrel.gov/bioenergy/biomass-compositional-analysis.html

Novozymes. (2018). Cellic ® CTec2 and HTec2 - Enzymes for hydrolysis of lignocellulosic materials. 1–9.

Parawira, W., & Tekere, M. (2011). Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production: Review. Critical Reviews in Biotechnology, 31(1), 20–31. https://doi.org/10.3109/07388551003757816

Rabelo, Sarita C., Filho, R. M. I., & Costa, A. C. (2009). Lime pretreatment of sugarcane bagasse for bioethanol production. Applied Biochemistry and Biotechnology, 153(1–3), 139–150. https://doi.org/10.1007/s12010-008-8433-7

Rabelo, Sarita Cândida. (2010). Avaliação E Otimização De Pré-Tratamentos E Hidrólise Enzimática Do Bagaço De Cana-De-Açúcar Para a Produção De Etanol De Segunda Geração. http://www.repositorio.unicamp.br/handle/REPOSIP/266933

Robak, K., & Balcerek, M. (2020). Current state-of-the-art in ethanol production from lignocellulosic feedstocks. Microbiological Research, 240(June), 126534. https://doi.org/10.1016/j.micres.2020.126534

Ruan, Z., Wang, X., Liu, Y., Liao, W., States, U., & Estates, H. (2019). Corn. In Integrated Processing Technologies for Food and Agricultural By-Products (p. 14). https://doi.org/https://doi.org/10.1016/B978-0-12-814138-0.00003-4

Silveira, M. H. L., Morais, A. R. C., Da Costa Lopes, A. M., Olekszyszen, D. N., Bogel-Łukasik, R., Andreaus, J., & Pereira Ramos, L. (2015). Current Pretreatment Technologies for the Development of Cellulosic Ethanol and Biorefineries. ChemSusChem, 8(20), 3366–3390. https://doi.org/10.1002/cssc.201500282

Siqueira, L. N. de, Guarda, E. A., Guarda, P. M., Silva, R. B. R. da, & Barbosa, R. dos S. (2016). Rendimento de hidrólise e produção de etanol lignocelulósico a partir de biomassa de capim elefante. Journal of Bioenergy and Food Science, 3(4), 191–196. https://doi.org/10.18067/jbfs.v3i4.112

Steinbach, D., Kruse, A., & Sauer, J. (2017). Pretreatment technologies of lignocellulosic biomass in water in view of furfural and 5-hydroxymethylfurfural production- A review. Biomass Conversion and Biorefinery, 7(2), 247–274. https://doi.org/10.1007/s13399-017-0243-0

Talebnia, F., Karakashev, D., & Angelidaki, I. (2010). Production of bioethanol from wheat straw: An overview on pretreatment, hydrolysis and fermentation. Bioresource Technology, 101(13), 4744–4753. https://doi.org/10.1016/j.biortech.2009.11.080

Zhang, J., Kong, C., Yang, M., & Zang, L. (2020). Comparison of Calcium Oxide and Calcium Peroxide Pretreatments of Wheat Straw for Improving Biohydrogen Production. ACS Omega, 5, 9151–9161. https://doi.org/https://doi.org/10.1021/acsomega.9b04368

Zhao, C., Zou, Z., Li, J., Jia, H., Liesche, J., Chen, S., & Fang, H. (2018). Efficient bioethanol production from sodium hydroxide pretreated corn stover and rice straw in the context of on-site cellulase production. Renewable Energy, 118, 14–24. https://doi.org/10.1016/j.renene.2017.11.001

Downloads

Published

25/08/2021

How to Cite

BOHN, L. R.; DRESCH, A. P.; CAVALI, M.; VARGAS, A. C. G.; FÜHR, J. F.; TIRONI, S. P.; FOGOLARI, O. .; MIBIELLI, G. M.; ALVES JR., S. L.; BENDER, J. P. Alkaline pretreatment and enzymatic hydrolysis of corn stover for bioethanol production. Research, Society and Development, [S. l.], v. 10, n. 11, p. e149101118914, 2021. DOI: 10.33448/rsd-v10i11.18914. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/18914. Acesso em: 3 jan. 2025.

Issue

Section

Engineerings