Dyes and pigments used in foods: an integrative literature review

Authors

DOI:

https://doi.org/10.33448/rsd-v10i10.18925

Keywords:

Dyes; Pigments; Foods; Review.

Abstract

The food colors are, in many countries, widely used to give food increased visual sensory quality, aiming, thus, the growth of the consumer market. Aware of this, the present work aimed to reevaluate the general properties of synthetic food dyes and natural pigments, the latter being generally used to replace the former. Then, the current analysis was based on the search for the strategy, selection of articles (with inclusion and exclusion criteria), eligibility, and data extraction. Thus, it was observed in studies that synthetic food dyes may cause several harmful effects to human health, among them, genetic damage and carcinogenicity. On the other hand, the use of natural pigments as an alternative to replace food dyes has been increasingly present in studies, presenting qualities that, previously, were not known, as is the case of anthocyanins, which have important physiological and ecological functions. It is also important to point out that the use of natural pigments goes beyond the limits of food, and are also found as sensitizers for solar cells, tissues, and medicines. Selected articles (47) leaded to a total of 72 distinct pieces of information, focused mainly on the biological activities and involving natural dyes and pigments. In short, the gradual replacement of dyes, currently used, still in large scale in some locations, by natural pigments, is already part of our present, allowing the creation of a future perspective with the production of processed foods without the damage that most of synthetic dyes produce to the human body.

References

Abel, A. (2012). The history of dyes and pigments. Colour Design, 557–587. https://doi.org/10.1016/B978-0-08-101270-3.00024-2.

Abramsson-Zetterberg, L., & Ilbäck, N. G. (2013). The synthetic food colouring agent Allura Red AC (E129) is not genotoxic in a flow cytometry-based micronucleus assay in vivo. Food and Chemical Toxicology, 59, 86-89. https://doi.org/10.1016/j.fct.2013.05.047.

Ahn, S. H.. Kim, H. J., Jeong, I., Hong, Y. J., Kim, M. J., Rhie, D. J., Jo, Y. H., Hahn, S. J. & Yoon, S. H. (2011) Grape seed proanthocyanidin extract inhibits glutamate-induced cell death through inhibition of calcium signals and nitric oxide formation in cultured rat hippocampal neurons. BMC Neuroscience, 12(78), 1-12. https://doi: 10.1186/1471-2202-12-78.

Al-Degs, Y. S., Halawa, R. A. E. & Alrub, S. S. A. (2012). Analyzing adsorption data of erythrosine dye using principal component analysis. Chemical Engineering Journal, 191, 185-194. https://doi.org/10.1016/j.cej.2012.03.002.

Ali, M. A. & Bashier, S. A. (2006). Effect of fast green dye on some biophysical properties of thymocytes and splenocytes of albino mice. Food Additives and Contaminants, 23(5), 452-461. https://doi.org/10.1080/02652030500522598.

Bagchi, D., Garg, A., Krohn, R. L., Bagchi, M., Bagchi, D. J., Balmoori, J. & Stohs, S. J. (1998). Protective Effects of Grape Seed Proanthocyanidins and Selected Antioxidants against TPA-Induced Hepatic and Brain Lipid Peroxidation and DNA Fragmentation, and Peritoneal Macrophage Activation in Mice. General Pharmacology: The Vascular System 30(5), 771-776. https://doi.org/10.1016/S0306-3623(97)00332-7.

Bahorun, T., Ramma, A. L., Crozier, A. & Aruoma, O. I. (2004). Total phenol, flavonoid, proanthocyanidin and vitamin C levels and antioxidant activities of Mauritian vegetables. Journal of the Science of Food and Agriculture, 84, 12, 1553-1561. https://doi.org/10.1002/jsfa.1820.

Balta, I., Sevastre, B., Mireșan, V., Taulescu, M., Raducu, C, Longodor, A. L., Marchiș, Z., Mariș, C. S. & Coroian, A. (2019). Protective effect of blackthorn fruits (Prunus spinosa) against tartrazine toxicity development in albino Wistar rats. BMC Chemistry, 13(104), 1-11, ago./2019. https://doi.org/10.1186/s13065-019-0610-y.

Bașak, K., Bașak, P. Y., Doǧuç, D. K., Aylak, F., Oǧuztüzün, S., Bozer, B. M. & Gültekin, F. (2016). Does maternal exposure to artificial food coloring additives increase oxidative stress in the skin of rats?. Human & Experimental Toxicology, 36, 10, 1023-1030. https://doi.org/10.1177/0960327116678297.

Başak, K., Doguç, D. K., Aylak, F., Karadayi, N. & Gültekin, F. (2014). Effects of Maternally Exposed Food Coloring Additives on Laryngeal Histology in Rats. Journal of Environmental Pathology, Toxicology and Oncology, 33(2), 123- 130. https://doi.org/10.1615/JEnvironPatholToxicolOncol.2014008723.

Bettin, F., Cousseau, F., Martins, K., Zaccaria, S., Girardi, V., Silveira, M.M. & Dillon, A.J.P. (2019). Effects of pH, Temperature and Agitation on the Decolourisation of Dyes by Laccase-Containing Enzyme Preparation from Pleurotus sajor-caju. Brazilian Archives of Biology and Technology, 62, e19180338. https://doi.org/10.1590/1678-4324-2019180338.

Beutner, S., Bloedorn, B., Frixel, S., Blanco, I. H., Hoffmann, T.;, Martin, H. D., Mayer, B., Noack, P., Ruck, C., Schmidt, M., Schülke, I., Sell, S., Ernst, H., Haremza, S., Seybold, G., Sies, H., Stahl, W. & Walsh, R. (2001). Quantitative assessment of antioxidant properties of natural colorants and phytochemicals: carotenoids, flavonoids, phenols and indigoids. The role of β-carotene in antioxidant functions. Journal of the Science of Food and Agriculture, 81(6), 559-568. https://doi.org/10.1002/jsfa.849.

Bueno, J.M., Sáez-Plaza, P., Escudero, F.R., Jiménez, A.M., Fett, R. & Asuero, A.G. (2012). Analysis and Antioxidant Capacity of Anthocyanin Pigments. Critical Reviews in Analytical Chemistry, 42,126–151. https://doi.org/10.1080/10408347.2011.632314.

Cho, J. S., Nguyen, V. P., Jeon, H. W., Kim, M. H., Eom, S. H., Lim, Y. J., Kim, W. C., Park, E. J., Choi, Y. I. & Ko, J. H. (2016). Overexpression of PtrMYB119, a R2R3-MYB transcription factor from Populus trichocarpa, promotes anthocyanin production in hybrid poplar. Tree Physiology, 36(9), 1162-1176. https://doi.org/10.1093/treephys/tpw046.

Dangles, O., Goupy, P., Carail, M., Giuliani, A., Duflot, D. & Veyrat, C. C. (2018). Carotenoids: Experimental Ionization Energies and Capacity at Inhibiting Lipid Peroxidation in a Chemical Model of Dietary Oxidative Stress. The Journal of Physical Chemistry B, 122(22), 5860-5869. https://doi.org/10.1021/acs.jpcb.8b03447.

Degs, Y. S. A., Halawa, R. A. E. & Alrub, S. S. A. (2012). Analyzing adsorption data of erythrosine dye using principal component analysis. Chemical Engineering Journal, 191, 185-194. https://doi.org/10.1016/j.cej.2012.03.002.

Doguc, D. K., Ceyhan, B. M., Ozturk, M. & Gultekin, F. (2012). Effects of maternally exposed colouring food additives on cognitive performance in rats. Toxicology and Industrial Health, 29(7), 616-623. https://doi.org/10.1177/0748233712436638.

Dotto, G. L., Pinto, L. A. A., Hachicha, M. A. & Knani, S. (2015). New physicochemical interpretations for the adsorption of food dyes on chitosan films using statistical physics treatment. Food Chemistry, 171, 1-7. https://doi.org/10.1016/j.foodchem.2014.08.098.

Dwivedi, K. & Kumar, G. (2015). Genetic Damage Induced by a Food Coloring Dye (Sunset Yellow) on Meristematic Cells of Brassica campestris L.: Journal of Environmental and Public Health. Hindawi Publishing Corporation, 2015(319727), 1-5. https://doi.org/10.1155/2015/319727.

El-Nabarawy, S. K., Radwan, O. K., Sisi, S. F. E. & Razek, A. M. A. (2015). Comparative Study of Some Natural and Artificial Food Coloring Agents on Depression, Anxiety and Anti-Social Behavior in Weanling Rats. Journal of Pharmacy and Biological Sciences, 10(2), 83-89. https://doi.org/10.9790/3008-10238389.

Elsevier. (2021). Atividades Biológicas dos Pigmentos Naturais e Malefícios dos Corantes Alimentícios.

El-Sisi, S. F., Radwan, O. K., El-Nabarawy, S. K. & Abdel-Razek, A. M. (2015). Comparative Study of Some Natural and Artificial Food Coloring Agents on Hyperactivity, Learning and Memory Performance in Weanling Rats. International Journal of Sciences: Basic and Applied Research (IJSBAR), 21(2), 309-324. https://www.gssrr.org/index.php/JournalOfBasicAndApplied/article/view/3827/2239.

Espinosa-Acosta, G., Jacques, A. L. R., Molina, G. A., Cornejo, J. M., Esparza, R., Martinez, A. R. H., González, I. S. & Estevez, M. (2018). Stability Analysis of Anthocyanins Using Alcoholic Extracts from Black Carrot (Daucus Carota ssp. Sativus Var. Atrorubens Alef.). Molecules, 23(11), 1-16. https://doi.org/10.3390/molecules23112744.

Gerardi, C., Tommasi, N., Albano, C., Blando, F., Rescio, L., Pinthus, E. & Mita, G. (2015). Prunus mahaleb L. fruit extracts: a novel source for natural food pigments. European Food Research and Technology, 241, 683-695. https://doi.org/10.1007/s00217-015-2495-x.

Goldenring, J. R., Woo, R. S., Shaywitz B. A., Batter D. K., Cohe D. J., Young J. G. & Teicher M. H. (1980). Effects Of Continuous Gastric Infusion Of Food Dyes On Developing Rat Pups. Life Sciences, 27(20), 1897-1904. https://www.talkingaboutthescience.com/studies/Goldenring1980.pdf

Gross, B. L., Reagon, M., Hsu, S. C., Caicedo, A. L., Jia, Y. & Olsen, K. M. (2010). Seeing red: the origin of grain pigmentation in US weedy rice. Molecular Ecology, 19(16), 3380-3393. https://doi.org/10.1111/j.1365-294X.2010.04707.x.

Gupta, V. K., Mittal, A., Kurup, L. & Mittal, J. (2006). Adsorption of a hazardous dye, erythrosine, over hen feathers. Journal of Colloid and Interface Science, 304(1), 52-57. https://doi.org/10.1016/j.jcis.2006.08.032.

Hamdi, M., Nasri, R., Dridi, N., Li, S. & Nasri, M. (2020). Development of novel high-selective extraction approach of carotenoproteins from blue crab (Portunus segnis) shells, contribution to the qualitative analysis of bioactive compounds by HR-ESI-MS. Food Chemistry, 302, 1-10. https://doi.org/10.1016/j.foodchem.2019.125334.

Jaworska, M., Szulińska, Z., Wilk, M. & Anuszewska, E. (2005). Separation of synthetic food colourants in the mixed micellar system Application to pharmaceutical analysis. Journal of Chromatography A, 1081(1), 42-47. https://doi.org/10.1016/j.chroma.2005.03.045.

Kandil, F. E., Song, L., Pezzuto, J. M., Marley, K., Seigler, D. S. & Smith, M. A. L. (2000). Isolation of Oligomeric Proanthocyanidins from Flavonoid-Producing Cell Cultures. In Vitro Cellular & Developmental Biology - Plant, 36, 492-500. https://doi.org/ 10.2307/4293395.

Kuskoski, E. M.; Asuero, A. G.; Parilla, M. C. G.; Troncoso, A. M. & Fett, R. (2004). Actividad Antioxidante De Pigmentos Antociánicos. Food Science and Technology, 24(4), 691-693. https://doi.org/10.1590/S0101-20612004000400036.

Liberati, A., Altman, D.G., Tetzlaff, J., Mulrow, C., Gøtzsche, P.C., Ioannidis, J.P.A., Clarke, M., Devereaux, P.J., Kleijnen, J. & Moher, D. (2009). The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. Italian Journal of Public Health. 6(4), 354-391. https://doi.org/10.1136/bmj.b2700.

Liberato, M. C. T. C. (2020). Química dos Alimentos: Estruturas, Propriedades e Transformações. 1. ed. Belo Horizonte: Poisson, 1-88. https://doi.org/10.36229/978-65-5866-003-3.

Lin, W. S., He, P. H., Chau, C. F., Liou, B. K., Li, S. & Pan, M. H. (2018). The feasibility study of natural pigments as food colorants and seasonings pigments safety on dried tofu coloring. Food Science and Human Wellness, 7(3), 220-228. https://doi.org/10.1016/j.fshw.2018.09.002.

Maekawa, A., Ogiu, T., Matsuok, C., Onodera, H., Furuta, K., Tanigawa, H., Hayash, Y. & Odashima, S. (1983) Carcinogenicity Study of Ammonia-Process Caramel In F344 Rats. Food and Chemical Toxicology, 21(3), 237-244. https://doi.org/10.1016/0278-6915(83)90054-6.

Maia, M., Resende, D.I.S.P., Duraes, F., Pinto, M.M.M. & Sousa, E. (2021). Xanthenes in Medicinal Chemistry e Synthetic strategies and biological activities. European Journal of Medicinal Chemistry, 210, 113085. https://doi.org/10.1016/j.ejmech.2020.113085.

Medeiros, R. A., Lourencao, B. C., Filho, R. C. R. & Filho, O. F. (2012). Simultaneous voltammetric determination of synthetic colorants in food using a cathodically pretreated boron-doped diamond electrode. Talanta, 97, 291-297. https://doi.org/10.1016/j.talanta.2012.04.033.

Moher, D., Liberati, A., Tetzlaff, J., Altman, D.G. & PRISMA Group (2009). Reprint--preferred reporting items for systematic reviews and meta-analyses:the PRISMA statement. Phys Ther, 89, 873-80. https://doi.org/10.1016/j.jclinepi.2009.06.005.

Mourtzinos, I., Prodromidis, P., Grigorakis, S., Makris, D. P., Biliaderis, C. G. & Moschakis, T. (1983). Natural food colourants derived from onion wastes: application in a yoghurt product. Electrophoresis, 39(15), 1975-1983. https://doi.org/10.1002/elps.201800073

Mutsuga, M., Sato, K., Hirahara, Y. & Kawamura, Y. (2011). Analytical methods for SiO2 and other inorganic oxides in titanium dioxide or certain silicates for food additive specifications. Food Additives and Contaminants: Part A, 28(4), 423-427. https://doi.org/10.1080/19440049.2010.551548.

Ohtoyo, M., Machinaga, N., Inoue, R., Hagihara, K., Yuita, H., Tamura, M., Hashimoto, R., Chiba, J., Muro, F., Watanabe, J., Kobayashi, Y., Abe, K.. Kita, Y., Nagasaki, M. & Shimozato, T. (2016). Component of Caramel Food Coloring, THI, Causes Lymphopenia Indirectly via a Key Metabolic Intermediate. Cell Chemical Biology, 23(5), 555-560. https://doi.org/10.1016/j.bbrc.2013.03.004.

Orona-Navar, A., Hernández, I. A., Luke, T. L., Zarazúa, I., Arellano, V. R., Guerrero, J. P. & Soto, N. O. (2020). Photoconversion efficiency of Titania solar cells co-sensitized with natural pigments from cochineal, papaya peel and microalga Scenedesmus obliquus. Journal of Photochemistry & Photobiology, A: Chemistry, 388(1), 1-48. https://doi.org/10.1016/j.jphotochem.2019.112216.

Page, M.J., Mckenzie, J.E., Bossuyt, P.M., Boutron, I., Hoffmann, T.C., Mulrow, C.D., Shamseer, L., Tetzlaff, J.M., Akl, E.A., Brennan, S.E., Chou, R., Glanville, J., Grimshaw, J.M., Hróbjartsson, A., Lalu, M.M., Li, T., Loder, E.W., Wilson, E.M., Mcdonald, S., Mcguinness, L.A., Stewart, L.A., Thomas, J., Tricco, A.C., Welch, V.A., Whiting, P. & Moher, D. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. PLOS Medicine 18(3), e1003583.

https://doi.org/10.1371/journal.pmed.1003583.

Paixão, R. M., Silva, L. H. B. R., Reck, I. M., Vieira, M. F., Bergamasco, R. & Vieira, A. M. S. (2019). Deposition of graphene nanoparticles associated with tannic acid in microfiltration membrane for removal of food colouring. Environmental Technology, 40, 1-7. https://doi.org/10.1080/09593330.2019.1627426.

Panzella, L., Eidenberger, T. & Napolitano, A. (2018). Anti-Amyloid Aggregation Activity of Black Sesame Pigment: Toward a Novel Alzheimer’s Disease Preventive Agent. Molecules, 23(3), 1-13. https://doi.org/10.3390/molecules23030676.

Park, W. S., Kim, H. J., Li, M., Lim, D. H., Kim, J., Kwak, S. S., Kang, C. M., Ferruzzi, M. G. & Ahn, M. J. (2018). Two Classes of Pigments, Carotenoids and C-Phycocyanin, in Spirulina Powder and Their Antioxidant Activities. Molecules, 23(8), 1-11. https://doi.org/10.3390/molecules23082065.

Periódicos Capes. (2021). Corantes e Pigmentos Naturais.

Phommalath, S., Teraishi, M., Yoshikawa, T., Saito, H., Tsukiyama, T., Nakazaki, T., Tanisaka, T. & Okumoto, Y. (2014). Wide genetic variation in phenolic compound content of seed coats among black soybean cultivars. Breeding Science, 64(4), 409-415. https://doi.org/10.1270/jsbbs.64.409.

Richhariya, G. & Kumar, A. (2018). Fabrication and characterization of mixed dye: Natural and synthetic organic dye. Optical Materials, 79(1), 296-301. https://doi.org/10.1016/j.optmat.2018.03.056.

Roychoudhury, A. & Giri, A. K. (1989). Effects of certain food dyes on chromosomes of A llium cepa. Genetic Toxicology, 223(3), 313-319. https://doi.org/10.1016/0165-1218(89)90125-0.

Santana, G. M., Sousa, J. J. A. & Peron, A. P. (2015). Action of Ponceau 4R (E-124) food dye on root meristematic cells of Allium cepa L. Acta Scientiarum, 37(1), 101-106. https://doi.org/10.4025/actascibiolsci.v37i1.23119.

Schweiggert, R.M. (2018). Perspective on the Ongoing Replacement of Artificial and Animal Based Dyes with Alternative Natural Pigments in Foods and Beverages. Journal of Agricultural and Food Chemistry, 66, 3074−3081. https://doi.org/10.1021/acs.jafc.7b05930.

Sisi, S. F. E., Radwan, O. K., Nabarawy, S. K. E. & Razek, A. M. A. (2015). Comparative Study of Some Natural and Artificial Food Coloring Agents on Hyperactivity, Learning and Memory Performance in Weanling Rats. International Journal of Sciences: Basic and Applied Research, 21(2), 309-324. https://doi.org/10.1111/j.1750-3841.2011.02267.x

Siwińska-Stefańska, K., Nowacka, M., Radzimska, A. K. & Jesionowski, T. (2012). Preparation of hybrid pigments via adsorption of selected food dyes onto inorganic oxides based on anatase titanium dioxide. Dyes and Pigments, 94(2), 338-348. https://doi.org/10.1016/j.dyepig.2012.01.017.

Srivastava, J. & Vankar, P. S. (2015). Carotenoids: as natural food colorant from Canna flowers. Pigment & Resin Technology, 44(1), 13-18. https://doi.org/10.1108/PRT-12-2013-0112.

Stoll, L., Rech, R., Flôres, S. H., Nachtigall, S. M. B. & Rios, A. O. (2018). Carotenoids extracts as natural colorants in poly(lactic acid) films. Journal of Applied Polymer Science, 135(33), 1-9. https://doi.org/10.1002/app.46585.

Taheri, A., Nasab, M. K. & Movafeghi, A. (2015). Effects of Different Strengths of Medium on Production of Phenolic and Flavonoid Compounds in Regenerated Shoots of Ziziphora persica. Russian Agricultural Sciences, 41(4), 225-229. https://doi.org/10.21608/jpp.2017.37464.

Tripathy, S. & Nair, P. V. (2012). Adverse drug reaction, patent blue V dye and anaesthesia. Indian Journal of Anaesthesia, 56(6), 563-566. https://doi.org/10.4103/0019-5049.104576.

Vidal, B. C. & Mello, M. L. S. (2005). Supramolecular Order Following Binding of the Dichroic Birefringent Sulfonic Dye Ponceau SS to Collagen Fibers. Biopolymers, 78(3), 121-128. https://doi.org/10.1002/bip.20274.

Xiao, Y., Yan, Q., Ding, H., Luo, M., Hou, L., Zhang, M., Yao, D., Liu, H. S., Li, X., Zhao, J. & Pei, Y. (2014). Transcriptome and Biochemical Analyses Revealed a Detailed Proanthocyanidin Biosynthesis Pathway in Brown Cotton Fiber. PLOS ONE, 9(1), 1-9. https://doi.org/10.1371/journal.pone.0086344.

Xu, H. X., Wan, M., Dong, H., But, P. P. H. & Foo, L. Y. (2000). Inhibitory Activity of Flavonoids and Tannins against HIV-1 Protease. Biological and Pharmaceutical Bulletin, 23(9), 1072- 1076. https://doi.org/10.1248/bpb.23.1072.

Xu, J., Zhang, Y., Zhou, H., Wang, M., Xu, P. & Zhang, J. (2012). An Amperometric Sensor for Sunset Yellow FCF Detection Based on Molecularly Imprinted Polypyrrole. Engineering, 5, 159-162. https://doi.org/10.4236/eng.2012.410B041.

Zetterberg, L. A. & Ilbäck, N. G. (2013). The synthetic food colouring agent Allura Red AC (E129) is not genotoxic in a flow cytometry-based micronucleus assay in vivo. Food and Chemical Toxicology, 59, 86-89. https://doi.org/10.1016/j.fct.2013.05.047.

Zhang, G. & Ma, Y. (2013). Mechanistic and conformational studies on the interaction of food dye amaranth with human serum albumin by multispectroscopic methods. Food Chemistry, Science Direct, 136(2), 442-449. https://doi.org/10.1016/j.foodchem.2012.09.026.

Zhang, J., Hou, X., Ahmad, H., Zhang, H.; Zhang, L. & Wang, T. (2014). Assessment of free radicals scavenging activity of seven natural pigments and protective effects in AAPH-challenged chicken erythrocytes. Food Chemistry, 145(1), 57-65. https://doi.org/10.1016/j.foodchem.2013.08.025.

Downloads

Published

13/08/2021

How to Cite

OLIVEIRA, M. E. P. de .; SILVA , W. M. B. da .; ALVES, D. R.; ANDRADE NETO, J. B. de .; MORAIS, S. M. de .; PINHEIRO, S. de O. Dyes and pigments used in foods: an integrative literature review. Research, Society and Development, [S. l.], v. 10, n. 10, p. e316101018925, 2021. DOI: 10.33448/rsd-v10i10.18925. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/18925. Acesso em: 12 sep. 2024.

Issue

Section

Review Article