A water-energy balance application with adaptations to a brazilian water supply system
DOI:
https://doi.org/10.33448/rsd-v10i10.19039Keywords:
Water; Energy; Water-energy balance; Energy efficiency; Water supply system.Abstract
According to the Alliance to Save Energy, between 2 % and 3 % of the total electric energy consumed in the world is used for water pumping in supply systems, with the consumption reduction potential through energy efficiency and conservation measures being estimated at 25 %. In Brazil, the water supply sector corresponds to 2.6 % of the total energy consumed in the country, with pumping systems being responsible for over 90 % of the total energy consumption. It is extremely common to find supersized facilities with pump motor sets operating outside their ideal points, with it being a common practice to perform flow and pressure control through the installation of valves. The use of reducing valves inserts unnecessary pressure drops into the hydraulic system, increasing energy consumption. The objective of this work is to present an energy balance of a study sector of the Autonomous Water and Sewage Service (AWSS) of a municipality in the south of Minas Gerais, Brazil, aiming to elucidate the electric energy consumption of the system and where the reduction in such consumption may occur. For this, we measured data such as the efficiency of the pump motor sets, calculated performance indicators and water loss indices, and applied the energy balance adapted. This work presents an application of a water-energy balance with adaptations to a Brazilian water supply system, under the perspective of the energy efficiency in lift station pump motor sets.
References
ABES. (2013). Perdas em sistemas de abastecimento de água: diagnóstico, potencial de ganhos com sua redução e propostas de medidas para o efetivo combate. Sumário Executivo. http://www.abes-sp.org.br/arquivos/perdas_resumo.pdf
Ahopelto, S. & Vahala, R. (2020). Cost–benefit analysis of leakage reduction methods in water supply networks. Water, 12 (1), 195. doi:10.3390/w12010195
Alegre, H. et al. (2017). Performance indicators for water supply services. London: IWA Publishing.
ANA. (2018). Abastecimento Urbano de Água. http://www.ana.gov.br/
Andrade, M. R. (2016). Balanço hidroenergético de sistema de distribuição de água aplicado a um setor do município de Cambuí - MG. Master’s Thesis. https://repositorio.unifei.edu.br/xmlui/handle/123456789/494
Aznar-Sánchez, J. A. et al. (2018). Mining waste and its sustainable management: Advances in worldwide research. Minerals, 8 (7), 284. doi: 10.3390/min8070284
Baleta, J. et al. (2019). Integration of energy, water and environmental systems for a sustainable development. Journal of cleaner production, 215 (1), 1424-1436. doi:10.1016/j.jclepro.2019.01.035
Bieber, N. et al. (2018). Sustainable planning of the energy-water-food nexus using decision making tools. Energy Policy, 113 (1), 584-607. doi:10.1016/j.enpol.2017.11.037
Britton, T. C. et al. (2013). Smart metering: Enabler for rapid and effective post meter leakage identification and water loss management. Journal of Cleaner Production, 54 (1), 166–176. doi:10.1016/j.jclepro.2013.05.018
Cantele, S. et al. (2018). A new framework for assessing the sustainability reporting disclosure of water utilities. Sustainability, 10 (2), 433. doi:doi.org/10.3390/su10020433
Chini, C. M., & Stillwell, A. S. (2018). The state of US urban water: data and the energy‐water nexus. Water Resources Research, 54 (3), 1796-1811. doi:
Coelho, B. &, Andrade-Campos, A. (2014). Efficiency achievement in water supply systems - A review. Renewable and Sustainable Energy Reviews, 30 (2), 59–84, 2014. doi:10.1016/j.rser.2013.09.010
Goulart, T. D. C. (2015) Estudos de Aprimoramento de Algoritmo de Calibração e Aplicação em Rede de Distribuição de Água de Cambuí (MG). Master’s Thesis. https://repositorio.unifei.edu.br/xmlui/handle/123456789/147
Krueger, E. H. et al. (2020). Balancing security, resilience, and sustainability of urban water supply systems in a desirable operating space. Environmental Research Letters, 15 (3), 22. doi:10.1088/1748-9326/ab6c2d
Lambert, A. &, Hirner, W. (2000). Losses from Water Supply Systems: Standard Terminology and Recommended Performance Measures. IWA the blue pages, 10 (3), 1–13.
Lee, S. et al. (2021). Setting future water rates for sustainability of a water distribution system. Journal of Water Resources Planning and Management, 147 (2), 13. doi:10.1061/(ASCE)WR.1943-5452.0001313
Luna, T. et al. (2019). Improving energy efficiency in water supply systems with pump scheduling optimization. Journal of cleaner production, 213 (3), 342-356. doi:10.1016/j.jclepro.2018.12.190
Mamade, A. et al. (2017). A comprehensive and well tested energy balance for water supply systems. Urban Water Journal, 14 (8), 853–861. doi:10.1080/1573062X.2017.1279189
Mamade, A. et al. (2018a). Assessing the Impact of Network Layout on Energy Efficiency, Water Losses and Water Quality in Water Supply. WDSA/CCWI Joint Conference Proceedings. Retrieved Sep 21, from https://ojs.library.queensu.ca
Mamade, A. et al. (2018b). Top-down and bottom-up approaches for water-energy balance in Portuguese supply systems. Water, 10 (5), 577. doi:10.3390/w10050577
Mutikanga, H. E. et al. (2009). Water loss management in developing countries: Challenges and prospect. Journal - American Water Works Association, 101 (12), 57–68. doi:10.1002/j.1551-8833.2009.tb10010.x
Oikonomou, K. & Parvania, M. (2018). Optimal coordination of water distribution energy flexibility with power systems operation. IEEE Transactions on Smart Grid, 10 (1), 1101-1110. doi:10.1109/TSG.2018.2824308
Razmjoo, A. et al. (2020). The main role of energy sustainability indicators on the water management. Modeling Earth Systems and Environment, 6 (3), 1419-1426. doi:10.1007/s40808-020-00758-1
Rodrigues, R. C. (2012). Análise do desempenho hidroenergético de sistemas de abastecimento de água do município de Marabá/PA. Master’s Thesis. http://repositorio.ufpa.br/jspui/handle/2011/3546
Sgroi, M. et al. (2018). Feasibility, sustainability and circular economy concepts in water reuse. Current opinion in environmental Science & Health, 2 (4), 20-25. doi:10.1016/j.coesh.2018.01.004
Song, M. et al. (2018). Water resources utilization efficiency and influence factors under environmental restrictions. Journal of Cleaner Production, 184 (5), 611-621. doi:10.1016/j.jclepro.2018.02.259
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Matheus Gonçalves Silqueira; Fernando das Graças Braga da Silva; Alex Takeo Yasumura Lima Silva; Matheus David Guimarães Barbedo
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.