Superficial temperature analysis on roof tiles coated with PVC waterproofing membrane
DOI:
https://doi.org/10.33448/rsd-v10i11.19415Keywords:
Tiles; PVC coating; Thermal evalutation.Abstract
The search for built environments with better air conditioning for the user is a growing interest in civil construction, in addition to guaranteeing a watertight environment, without infiltration and being able to provide environments with milder temperatures. In this sense, the objective of this work was to evaluate whether the use of waterproofing PVC coating improves thermal comfort in buildings. The tests were carried out at laboratory and field conditions, evaluating the temperature variation on the faces of tiles with and without waterproofing PVC coating. In the laboratory, surface temperatures were evaluated under the incidence of light from a reflector. In the field, direct sunlight was measured. The results showed that the use of PVC coating acts as a waterproofing agent, and as reflector of solar radiation, providing a difference between the external and internal temperature in the tile of about 20°C. The use of waterproofing PVC coating for thermal improvement in buildings is effective, resulting in the reflection of part of the solar radiation incident on the covering surface of buildings, hindering the passage of heat to the internal area.
References
ABNT, NBR 15.575 (2013). Desempenho de edificações habitacionais, Rio de Janeiro, 2013.
ABNT, NBR 9.575 (2010). Impermeabilização, Rio de Janeiro, 2010.
Abreu, P. G., Abreu, V. M. N., & Costa, O. A. D, (2001). Avaliação de Coberturas de Cabanas de Maternidade em Sistema Intensivo de Suínos Criados ao Ar Livre (Siscal), no Verão. Revista Brasileira de Zootecnia, 30 (6), 1728-1734..
Antonaia, A., Ascione, F., Castaldo, A., D’angelo, A., De Mais, R. F., Ferrara, M., Vanoli D, G. P., & Vitiello, G. (2016). Cool materials for reducing summer energy consumptions in Mediterranean climate: In-lab experiments and numerical analysis of a new coating based on acrylic paint. Applied Thermal Engineering, 102, 91-107.
Akbari, H., Levinson, R., & Rainer, L. (2005). Monitoring the energy-use effects of cool roofs on California commercial buildings. Energy and Biuldings, 37, 1007-1016.
Ascione, F., De Mais, R. F., Santamouris, M., Ruggiero, S., & Vanoli, G. P. (2018). Experimental and numerical evaluations on the energy penalty of reflective roofs during the heating season for Mediterranean climate. Energy, 144, 178-199.
ASHRAE, Standard 55 (2013). Thermal Environmental Conditions for Human Occupancy, Estados Unidos, 2013.
Barboza, E. N., Bezerra Neto, F.C.; & Caiana, C.R.A. (2020). Sensoriamento Remoto aplicado à análise do fenômeno de Ilhas de Calor Urbano na Cidade de Vitória, Espírito Santo. Research, Society and Development, 9 (6), 1-21.
Bueno, A. D. (1994). Transferência de Calor e Umidade em Telhas: Simulação e Análise Experimental. Dissertação (Mestrado em Engenharia Civil) - Universidade Federal de Santa Catarina, Florianópolis.
Castro, A. P. A. S., Labaki, L. C., Caram, R. M., Basso, A., & Fernandes, M. R. (2003). Medidas de refletância de cores de tintas através de análise espectral. Ambiente Construído, 3 (2), 69-76.
Cimino, R. (2002). Como Construir: Revestimento de Reservatório de Água com Manta Armada de PVC. Téchne, 62.
Climate-data.org. (2020). Clima: Guaratinguetá-SP. https://pt.climate-data.org/america-do-sul/brasil/sao-paulo/guaratingueta-3088/#temperature-graph .
Coelho, T. da C. C.; Gomes, C. E. M.; & Dornelles, K. A. (2017). Desempenho térmico e absortância solar de telhas de fibrocimento sem amianto submetidas a diferentes processos de envelhecimento natural. Ambiente Construído, 17 (1), 147-161.
De Masia,R. F., Ruggieroa, S., & Vanolib, G. P. (2018). Acrylic white paint of industrial sector for cool roofing application: Experimental investigation of summer behavior and aging problem under Mediterranean climate. Solar Energy, 169, 468-487.
Kuczynski D. A, & Muncinelli G. (2014). Estudo de comparação das características de desempenho técnico e financeiro da tecnologia led com as fluorescentes e incandescentes em ambiente residencial. Ágora: rev. divulg. cient. [Internet]. 19(1):149-73. http://www.periodicos.unc.br/index.php/agora/article/view/336
Marinoski, D. L., De Souza, G. T., Sangoi, J. M., & Lamberts, R. (2010). Utilização de Imagens em Infravermelho para Análise Térmica de Componentes Construtivos. In: XIII Encontro Nacional de Tecnologia do Ambiente Construído, Canela.
Michels, C. (2007). Análise da transferência de calor em coberturas com barreiras radiantes. Dissertação (Mestrado em Engenharia Civil) - Universidade Federal de Santa Catarina, Florianópolis.
Pisello, A. L., Castaldo, V. L., Piselli, C., Fabiani, C., & Cotana, F. (2017). Thermal performance of coupled cool roof and cool facçade: Experimental monitoring and analytical optimization procedure. Energy and Buildings, 157, 35-52.
Revel, G. M., Martarelli, M., Emiliani, M., Celotti, L., Nadalini, R., Ferrari, A., Hermanns, S., & Beckers, E. (2014). Cool products for building envelope – Part II: Experimental and numerical evaluation of thermal performances. Solar Energy, 105, 780-791.
Silva, D. O., & Oliveira, P. S. F. (2006). Impermeabilização com mantas de PVC. Téchne, 111.
Silva, E. M., Barboza, E. N., Morais, J. M. P., Souza, J. H. A, & Oliveira, B. B. (2020). Análise de sensação térmica no município de Barbalha, Ceará. Research, Society and Development, 9 (7), 1-21.
Silveira, R., Marinoski, D. L., & Lamberts, R. (2012). Avaliação da absortância à radiação solar e temperatura superficial de telhas de fibrocimento utilizadas nas coberturas de edificações do campus da UFSC. In: XIV Encontro Nacional de Tecnologia do Ambiente Construído, Juiz de Fora.
Synnefa, A., Saliari, M., & Santamouris, M. (2012). Experimental and numerical assessment of the impact of increased roof reflectance on a school building in Athens. Energy and Buildings, 55, 7-15.
Tahara, A., Freire, M. R., & Amorim, A. L. (2013). Estudo da ferramenta Ecotect na avaliação do desempenho térmico no contexto BIM. In: III Simpósio Brasileiro de Qualidade do Projeto no Ambiente Construído; VI Encontro de Tecnologia de Informação e Comunicação na Construção, Campinas.
Tokusumi, A. T. G.; & Foiato, M. (2019). Análise de desempenho termoacústico de telhas. Conhecimento Em Construção, 6, 35-48. 2019. https://portalperiodicos.unoesc.edu.br/conhecconstr/article/view/21833.
Vittorino, F., Sato, N. M. N., & Akutsu, M. (2003). Desempenho térmico de isolantes refletivos e barreiras radiantes aplicados em coberturas. In: VII Encontro Nacional de Conforto no Ambiente Construído, Curitiba.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Márcia Regina Freitas; Matheus Müller; Victor Rodrigues Gomes Porciúncula
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.