Development of computational routine with genetic algorithms to optimize the cost of water consumption through water-saving devices analysis
DOI:
https://doi.org/10.33448/rsd-v10i11.19427Keywords:
Water-saving devices; Genetic algorithms; Optimization.Abstract
The rational consumption of residential water is one of the main issues to be addressed in today since it represents an important part of the consumption of water resources in our society. Aware of this, an algorithm was developed to aid in the optimization of the use of hydraulic devices in residential environments, testing this proposal in a generic residential environment. In order to reach this objective, market surveys and technical reference were made to collect data from the hydraulic devices and later the genetic algorithm technique was used for optimization processing. As a result, we found a set of optimal scenarios for the use of the devices, ensuring greater water savings at the lowest cost. It was concluded that the work proposes an optimization routine that can have satisfactory applicability for decision making in the optimization of the use of residential hydraulic devices.
References
Alexandre, A. C. et al. (2017). Avaliação do impacto da substituição de equipamentos hidrossanitários convencionais por equipamentos economizadores no consumo de água. Engenharia Sanitaria e Ambiental, 22(5), 1005–1015. https://doi.org/10.1590/S1413-41522016130494
Ali, M. et al. (2020). Water Usage Patterns and Water Saving Devices in Households: A Case of Eastleigh, Nairobi. Journal of Water Resource and Protection, 12(04), 303–315. https://doi.org/10.4236/jwarp.2020.124018
ANA. (2021). Conjuntura dos recursos hídricos no brasil: 2019. http://conjuntura.ana.gov.br/
Botelho, M. H. C., & Ribeiro Jr., G. A. (2006). Instalações Hidráulicas Prediais: usando tubos de PVC e PPR. Edgard Blucher.
Byrne, J. et al. (2020). WGV: Quantifying mainswater savings in a medium density infill residential development. Sustainability (Switzerland), 12(16), 1–19. https://doi.org/10.3390/su12166483
Caixa Econômica Federal. (2019). Sistema Nacional de Índices e Preços para Construção Civil - SINAPI. http://www.caixa.gov.br/poder-publico/apoio-poder-publico/sinapi/Paginas/default.aspx
Coley, D. A. (1999). An Introduction to genetic Algorithms for Scientists and Engineers. World Scientific.
Companhia de Saneamento Basico do Estado de São Paulo. (2019). Manual técnico – Equipamentos economizadores. R http://site.sabesp.com.br/site/interna/Default.aspx?secaoId=145
COPASA. (2019). Tabela de Tarifas - 2019. https://www.copasa.com.br
Dias, T. F. et al. (2018). Factors influencing water consumption in buildings in southern Brazil. Journal of Cleaner Production, 184, 160–167. https://doi.org/10.1016/j.jclepro.2018.02.093
Hervás-Gámez, C., & Delgado-Ramos, F. (2019). Drought management planning policy: From Europe to Spain. Sustainability (Switzerland), 11(7), 1–26. https://doi.org/10.3390/su11071862
Instituto Nacional de Metrologia, Qualidade E Tecnologia. (2019). Tabelas de consumo/eficiência energética. http://www.inmetro.gov.br/consumidor/tabelas.asp?iacao=imprimir
Jaime Torres, M. M., & Carlsson, F. (2018). Direct and spillover effects of a social information campaign on residential water-savings. Journal of Environmental Economics and Management, 92, 222–243. https://doi.org/10.1016/j.jeem.2018.08.005
Lee, W. &, Kim H. Y. (2005). Genetic algorithm implementation in Python. Fourth Annual ACIS International Conference on Computer and Information Science, 4, 5. https://doi.org/10.1109/ICIS.2005.69
Linden, R. (2008). Algoritmos Genéticos. (2a ed.), Brasport.
Manouseli, D. et al. (2019). Evaluating the Effectiveness of Residential Water Efficiency Initiatives in England: Influencing Factors and Policy Implications. Water Resources Management, 33(7), 2219–2238. https://doi.org/10.1007/s11269-018-2176-1
Marinoski, A. K. et al. (2018). Environmental benefit analysis of strategies for potable water savings in residential buildings. Journal of Environmental Management, 206, 28–39. https://doi.org/10.1016/j.jenvman.2017.10.004
Mitchell, M. (1999). An introduction to genetic algorithms. MIT Press.
Morote, Á.-F. et al. (2019). Water Management in Urban Sprawl Typologies in the City of Alicante (Southern Spain): New Trends and Perception after the Economic Crisis? Urban Science, 3(1), 7. https://doi.org/10.3390/urbansci3010007
Nawaz, R. et al. (2019). Long-Term Projections of Domestic Water Demand: A Case Study of London and the Thames Valley. Journal of Water Resources Planning and Management, 145(11), 1–17. https://doi.org/10.1061/(ASCE)WR.1943-5452.0001088
Sousa, V. et al. (2019). Performance of water efficiency measures in commercial buildings. Resources, Conservation and Recycling, 143(10), 251–259. https://doi.org/10.1016/j.resconrec.2019.01.013
Stavenhagen, M. et al. (2018). Saving water in cities: Assessing policies for residential water demand management in four cities in Europe. Cities, 79(12), 187–195. https://doi.org/10.1016/j.cities.2018.03.008
Tam, V. W. Y. et al. (2019). Life-cycle analysis by using the alternative sustainable water innovations in residential dwellings. International Journal of Construction Management, 0(0), 1–13. https://doi.org/10.1080/15623599.2019.1603564
Tirado, D. et al. (2019). Implementation of water-saving measures in hotels in Mallorca. Sustainability (Switzerland), 11(23), 1–13. https://doi.org/10.3390/su11236880
Torres-Bagur, M. et al. (2019). Incentives and barriers to water-saving measures in hotels in the Mediterranean: A case study of the Muga river basin (Girona, Spain). Sustainability (Switzerland), 11(13), 16. https://doi.org/10.3390/su11133583
Vieira, P. et al. (2017). Assessment of household water use efficiency using performance indices. Resources, Conservation and Recycling, 116, 94–106. https://doi.org/10.1016/j.resconrec.2016.09.007
Wang, C. H., & Dong, H. (2017). Responding to the drought: A spatial statistical approach to investigating residentialwater consumption in Fresno, California. Sustainability (Switzerland), 9(2), 15. https://doi.org/10.3390/su9020240
Willis, R. M. et al. (2013). End use water consumption in households: Impact of socio-demographic factors and efficient devices. Journal of Cleaner Production, 60, 107–115. https://doi.org/10.1016/j.jclepro.2011.08.006
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Jayme José Andretta Neto; Fernando das Graças Braga da Silva; Alex Takeo Yasumura Lima Silva; José Antonio Tosta dos Reis
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.