A brief summary of the biophysical aspects of magnetotactic bacteria and their relationship to astrobiology through terraforming
DOI:
https://doi.org/10.33448/rsd-v9i2.1962Keywords:
magnetotactic bacteria; astrobiology; diversity; Mars; terraforming.Abstract
Magnetotactic bacteria are gram negative, capable of responding to magnetic fields and have interesting characteristics related to their biophysical and metabolic versatility. The aim of this research is to suggest that these microorganisms, due to these characteristics, may participate together in the terraforming process with other photosynthetic extremophilic microorganisms. Magnetotactic has a cosmopolitan distribution and is ubiquitous in microaerobic aquatic environments. Although magnetotactic bacteria are historically related to the ALH 84001 meteorite as a species of biosignature or as a possible fossil record from Mars, this problem will not be addressed in this paper. A brief review of the magnetotactic bacteria and how they may be related in a possible terraforming process on Mars or other planets will be briefly presented. Finally, it is important to emphasize that this theme has evolved greatly over time, from a science fiction story to a truly scientific domain and context. Finally, it is hoped that this work will serve as motivation and basis for future research in order to contribute to the spread of astrobiology.
References
Averner, M. M. & MacElroy, R. D. (1976) On the habitability of Mars: an approach to planetary ecosynthesis. NASA SP-414.
Balkwill, D. L., Maratea, D., & Blakemore, R. P. (1980). Ultrastructure of a magnetotactic spirillum. Journal of Bacteriology, 141(3), 1399-1408.
Bazylinski, D.A., Garrat-Reed, A. J. & Frankel, R. B. (1994). Electron microscopic studies of magnetosomes in magnetotactic bacteria. Microsc. Res. Tech. v. 27, p. 389-401. doi:10.1002/jemt.1070270505
Bazylinski, D. A., & Frankel, R. B. (2004). Magnetosome formation in prokaryotes. Nature Reviews Microbiology, 2(3), 217. doi: 10.1038/nrmicro842
Blakemore, R. (1975). Magnetotactic bacteria. Science, 190(4212), 377-379. doi: 10.1126/science.170679
Blakemore, R. P., & Frankel, R. B. (1981). Magnetic navigation in bacteria. Scientific American, 245(6), 58-65.
Blakemore, R. P. (1982). Magnetotactic bacteria. Annual Reviews in Microbiology, 36(1), 217-238. doi: 10.1146/annurev.mi.36.100182.001245
Bellini, S. (2009) Further studies on “magnetosensitive bacteria”. Chin. J. Ocean. Limnol. 27: 6. doi:10.1007/s00343-009-0006-2
Fassbinder, J. W., Stanjekt, H. & Vali, H. (1990). Occurrence of magnetic bacteria in soil. Nature, 343(6254), 161. doi:10.1038/343161a0
Fogg, M. J. (1989) The Creation of an artificial, dense Martian atmosphere: a major obstacle to the terraforming of Mars. JBIS 42, 577–582. Retrived from: http://ui.adsabs.harvard.edu/abs/1989JBIS...42..577F
Fogg, M. J. (1993) Terraforming: a review for environmentalists. The Environmentalist, 13, 7–17. doi:10.1007/BF01905499
Fogg, M. J. (1995) Terraforming: Engineering Planetary Environments. SAE International Publisher, Warrendale, PA.
Fogg, M. J. (1998) Terraforming Mars: a review of current research. Adv. Space Res. 3, 415–442. doi:10.1016/S0273-1177(98)00166-5
Frankel, R. B. (1984). Magnetic guidance of organisms. Annual review of biophysics and bioengineering, 13(1), 85-103. doi:10.1146/annurev.bb.13.060184.000505
Frankel, R. B., Bazylinski, D. A., Johnson, M. S., & Taylor, B. L. (1997). Magneto-aerotaxis in marine coccoid bacteria. Biophysical Journal, 73(2), 994-1000. doi:10.1016/S0006-3495(97)78132-3
Frankel R.B., Williams T.J., Bazylinski D.A. (2006) Magneto-Aerotaxis. In: Schüler D. (eds) Magnetoreception and Magnetosomes in Bacteria. Microbiology Monographs, 3. Springer, Berlin, Heidelberg. doi: 10.1007/7171_2006_036
Gorby, Y. A., Beveridge, T. J., & Blakemore, R. P. (1988). Characterization of the bacterial magnetosome membrane. Journal of Bacteriology, 170(2), 834-841. doi:10.1128%2Fjb.170.2.834-841.1988
Hartmann, W. K., Kallenbach, R., Geiss, J., & Turner, G. (2001). Summary: New views and new directions in Mars research. In Chronology and Evolution of Mars (461-470). Springer, Dordrecht. doi: 10.1023/A:1011926129279
Kirschvink, J. L., Jones, D. S., & MacFadden, B. J. (Eds.). (2013). Magnetite biomineralization and magnetoreception in organisms: a new biomagnetism, 5. Springer Science & Business Media. doi: 10.1007/978-1-4613-0313-8
Lefèvre, C. T., & Bazylinski, D. A. (2013). Ecology, diversity, and evolution of magnetotactic bacteria. Microbiology and Molecular Biology Reviews, 77(3), 497-526. Doi: 10.1128/MMBR.00021-13
Lins de Barros, H.G.P., Esquivel, D.M. & Farina, M. (1990). Magnetotaxis. Sci. Prog. Oxford. 74, 347-359. Retrieved from: https://www.jstor.org/stable/43423895
Mann, S., Sparks, N. H., & Board, R. G. (1990). Magnetotactic bacteria: microbiology, biomineralization, palaeomagnetism and biotechnology. Adv. Microb. Physiol, 31, 125-181. doi:10.1016/S0065-2911(08)60121-6
Margato, B., Santos, M. D., & Barros, H. L. D. (2007). Magnetic properties of magnetotatic microorganism: an example of multidisciplinar research. Revista Brasileira de Ensino de Física, 29(3), 347-353. Retrieved from: http://www.scielo.br/pdf/rbef/v29n3/a06v29n3.pdf
Martins, J. L. (2007). Ecologia dos organismos multicelulares magnetotáticos. Tese de Doutorado em Ciências (Microbiologia). Instituto de Microbiologia Prof. Paulo Góes, Universidade Federal do Rio de Janeiro.
McKay, D. S., Gibson, E. K., Thomas-Keprta, K. L., Vali, H., Romanek, C. S., Clemett, S. J., & Zare, R. N. (1996). Search for past life on Mars: Possible relic biogenic activity in Martian meteorite ALH84001. Science, 273(5277), 924-930. doi: 10.1126/science.273.5277.924
McKay, C. P. & Marinova, M. M. (2001) The Physics, Biology and Environmental Ethics of making Mars habitable. Astrobiology, 1, 89–109. doi:10.1089/153110701750137477
Owen, T., Biemann, K., Rushneck, D. R., Biller, J. E., Howarth, D. W., & Lafleur, A.L. The composition of atmosphere at the surface of Mars. Journal of Geophysical Research, v.82, n.28, p.4635-4639, 1977; doi:10.1029/JS082i028p04635
Pereira, A.S. et al. (2018). Metodologia da pesquisa científica. [e-book]. Santa Maria. Ed. UAB/NTE/UFSM. Disponível em: https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1. Acesso em: 25 out. 2019.
Sagan, C. (1973) Planetary engineering on Mars. Icarus, 20, 513–514. doi:10.1016/0019-1035(73)90026-2
Stolz, J. F. (1993). Magnetosomes. Microbiology, 139(8), 1663-1670. doi:10.1099/00221287-139-8-1663
Sukumaran, P. V. (2005). Magnetotactic bacteria, magnetofossils and the antiquity of life. Current Science, 88(6), 879-885. Retrieved from: https://www.jstor.org/stable/24110366
Thomas-Keprta, K. L., Clemett, S. J., Bazylinski, D. A., Kirschvink, J. L., McKay, D. S., Wentworth, S. J., & Romanek, C. S. (2002). Magnetofossils from ancient Mars: a robust biosignature in the Martian meteorite ALH84001. Applied and Environmental Microbiology, 68(8), 3663-3672. doi:10.1128/AEM.68.8.3663-3672.2002
Williams, T. J., Zhang, C. L., Scott, J. H., & Bazylinski, D. A. (2006) Evidence for autotrophy via the reverse tricarboxylic acid cycle in the marine magnetotactic coccus strain MC-1. Appl. Environ. Microbiol. 72, 1322–1329. doi:10.1128/AEM.72.2.1322-1329.2006
Zubrin, R. M. & McKay, C. P. (1997) Technological requirements for terraforming Mars. JBIS, 50, 83–92. doi:10.2514/6.1993-2005
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.