Eucalyptus wood treatment and leaching behavior of CCB (Chromated Copper Borate): a field test in Brazilian Midwest

Authors

DOI:

https://doi.org/10.33448/rsd-v10i11.19746

Keywords:

Wood properties; Wood deterioration; Wood preservation.

Abstract

The use of Chromated Copper Borate (CCB) for wood treatment is known with several studies on a laboratory scale. However, there is a lack of field studies to analyze the effect of the CCB over time. This study aimed to evaluate the wood properties of Eucalyptus urophylla S.T. Blake x Eucalyptus grandis W. Mill ex Maiden (called E. urograndis), treated with CCB as well evaluate the leaching of chromium, copper and bore (Cr/Cu/B) in field test. The field experiment, with wood treated and untreated (no CCB application), was installed in 2016 and remained until 2018. Wood physico-mechanical properties were evaluated for each condition (treated and untreated) and at three different time: at 0, 1 and 2 years of field exposure. The elements (Cr/Cu/B) losses (leaching) were determined by the difference in the quantification of each element retained in the wood (retention), from year 0 (amount of original elements) in relation to years 1 and 2 of field exposure. The preservative treatment of E. urograndis wood with CCB was efficient to maintain its physical and mechanical properties (mass loss, basic density, rupture and elasticity modulus) during the 2 years of field exposure. The E. urograndis wood without CCB treatment showed reductions in the physical-mechanical properties, indicating their low natural durability. High leaching (close to 100%) for boron was observed. In addition, the total of CCB retention has not changed (statistically) after 2 years.

References

ABNT - Associação Brasileira de Normas Técnicas (Brazilian Association of Technical Standards) (2018). NBR 9480: Preserved rounded pieces of eucalyptus for rural buildings: requirements. ABNT.

ABNT - Associação Brasileira de Normas Técnicas (Brazilian Association of Technical Standards) (2013). NBR 6232: penetration and retention of preservative in pressure-treated wood. ABNT.

ABNT - Associação Brasileira de Normas Técnicas (Brazilian Association of Technical Standards) (2003). NBR 11941: Wood - Determination of basic density. ABNT.

Adebawo, F. G. (2020). Durability and strenght properties of Triplochiton scleroxylon wood treated with Thevitia peruviana seed oil after fungal attack. Journal of Tropical Forest Science, 32(1): 58-65.

Akcay, C., Birinci, E., Birinci, C. & Kolayli, S. (2020). Durability of wood treated with propolis. BioResources, 15(1): 1547-1562.

Alvares, C. A., Stape, J. L., Sentelhas, P. C., Gonçalves, J. L. M. & Sparovek, G. (2013). Köppen´s climate classification map for Brazil. Meteorologische Zeitschrift, 22(6): 711-728.

ASTM - American Society for Testing Materials (2005). ASTM-D 2017: Standard method of accelerated laboratory test of natural decay resistance of woods. ASTM.

Bi, Z., Yang, F., Lei, Y., Morrell, J. J. & Yan, L. (2019). Identification of antifungal compounds in konjac flying powder and assessment against wood decay fungi. Industrial Crops and Products, 140: 1-7.

Brischke, C., Olberding, S., Meyer-Veltrup, L., Bornemann, T. & Welzbacher, C. R. (2013). Intrasite variability of fungal decay on wood exposed in ground contact. International Wood Products Journal, 4(1): 37-45.

COPANT - Panamerican Technical Standards Commission (1971). COPANT 30:1-006: Wood tests and Static bending. COPANT.

França, F. J. N., França, T. S. F. A., Arango, R. A., Woodward, B. M. & Vidaurre, G. B. (2017). Variation in natural durability of seven Eucalyptus grandis x Eucalyptus urophylla hybrid clones. Forest Products Journal, 67(3/4): 230-235.

Gallio, E., Zanatta, P., Machado, S. F., Beltrame, R. & Gatto, D. A. (2018) Three hardwoods technological properties characterization deteriorated by termites. Matéria, 23(4): 1-9.

García-Valcárcel, A. I., Bravo, I., Jiménez, C. & Tadeo, J. L. (2004). Influence of leaching medium and drying time between successive leaching periods on the emission of Chromium, Copper, and Boron from treated wood. Environmental Toxicology and Chemistry, 23(11): 2682–2688.

García-Valcárcel, A. I., Tadeo, J. L. (2006). Leaching of Copper, Chromium, and Boron from treated timber during aboveground exposure. Environmental Toxicology and Chemistry, 25(9): 2342–2348.

Humar, M., Budija, F., Hrastnik, D., Lesar, B. & Petrič, M. (2011). Potentials of liquefied CCB treated waste wood for wood preservation. Drvna Industrija, 62(3): 213-218.

Kaur, P. J., Satya, S., Pant, K. K. & Naik, S. N. (2016). Eco-Friendly oreservation of bamboo species: Traditional to modern techniques. BioResources, 11(4): 10604-10624.

Kim, J. H., Sutley, E. J. & Martin, F. (2019). Review of modern wood fungal decay research for implementation into a building standard of practice. Journal of Materials in Civil Engineering, 31(12): 1-10.

Kleindienst, Q., Besserer, A., Antoine, M., Perrin, C., Bocquet, J. & Bléron L. (2017). Predicting the beech wood decay and strength loss in-ground. International Biodeterioration & Biodegradation, 123: 96-105.

Lebow, S. (1996). Leaching of wood preservative components and their mobility in the environment : summary of pertinent literature. U.S. Department of Agriculture.

Lima, P. A. F., Gouveia, F. N., Baraúna, E. E. P. & Sette Júnior, C. R. (2020). CCB retention and penetration in eucalyptus fence posts in function of condition of preservative treatment. Floresta 50(2): 1345-1352.

Lopes, D. J. V., Paes, J. B., Jankowsky, I. P., Segundinho, P. G. A. & Vidaurre, G. B. (2017). Influences of diameter and wood moisture on quality of the preservative treatment. Floresta e Ambiente, 24: 1-10.

Mattila, H. K., Mäkinen, M. & Lundell, T. (2020). Hypoxia is regulating enzymatic wood decomposition and intracellular carbohydrate metabolism in filamentous white rot fungus. Biotechnology for Biofuels, 13(26): 1-17.

Mattos, B. D., Gatto, D. A., Cademartori, P. H. G., Stangerlin, D. M. & Beltrame, R. (2013). Durabilidade a campo da madeira de três espécies de Eucalyptus tratadas por imersão simples. Agrária (8): 648-665.

Melo, R. R. & Del Menezzi, C. H. S. (2016). Ultrasound nondestructive method to predict physical-mechanical properties of LVL made from Schizolobium amazonicum. Ciência Florestal, 26(1): 263–272.

Ncube, E., Chungu, D., Kamdem, D. P. & Musawa, K. (2012). Use of a short span field test to evaluate termite resistance of Eucalyptus grandis and Bobgunnia madagascariensis in a tropical environment. BioResources 7(3): 4098–4108.

Noll, M., Buettner, C. & Lasota, S. (2019). Copper containing wood preservatives shifted bacterial and fungal community compositions in pine sapwood in two field sites. International Biodeterioration & Biodegradation, 142: 26–35.

Oliveira, W. C., Pereira, B. L. C., Goes, L. S. A., Quintilhan, M. T., Oliveira, A. C. & Môra, R. (2019). Deterioration of teak wood in accelerated decay test. Floresta e Ambiente, 26(2): 1-9.

Paes, J. B., Lopes, D. J. V, Gonçalves, F. G., Brito, F. M. S. & Lombardi, L. R. (2014). Effect of concentration on ascension of preservative solutions prepared with CCB in Eucalyptus fence posts. Floresta e Ambiente, 21(3): 384-393.

Paes, J. B., Ramos, I. E. C., Nascimento, J. W. B. (2008). Efficiency of CCB on resistance of Prosopis juliflora (Sw.) D.C. wood to xylophogous termites under forced feeding assay. Floresta e Ambiente, 15(1): 1-12.

Panigrahi, S. & Tripathy, S. (2019). Enhancement of technology from old preservatives to new preservatives and latest development in the field of preservation. International Journal of Current Microbiology and Applied Sciences, 8(1): 2173-2182.

Pawlik, A., Ruminowicz-Stefaniuk, M., Frac, M., Mazur, A., Wielbo, J. & Janusz, G. (2019). The wood decay fungus Cerrena unicolor adjusts its metabolism to grow on various types of wood and light conditions. Plos One, 14(2): 1-19.

Pereira, A. S., Shitsuka, D. M., Parreira, F. J. & Shitsuka, R. (2018). Metodologia da pesquisa científica. UFSM, NTE.

Pizzi, A. & Baecker, A. (1996). A new boron fixation mechanism for environment friendly wood preservatives. Holzforschung, 50: 507–510.

Quintilhan, M. T., Oliveira, W. C., Oliveira, A. C., Pereira, B. L. C., Môra, R. & Pinto, A. A. S. (2018). Deterioration of Eucalyptus and Corymbia wood in field test. Ciência de Madeira, 9(2): 82-94.

Ribeiro, M. A., Stangerlin, D. M., Souza, A. P., Cardoso, G. V., Calegari, L. & Gatto, D. A. (2014). Natural durability of the jequitibá wood in deterioration tests in open field and forest during the dry and rainy seasons. Comunicata Scientiae, 5(4): 402-411.

Shanu, S. A., Das, A. K., Rahman, M. M. & Ashaduzzaman, M. (2015). Effect of Chromate-Copper-Boron preservative treatment on physical and mechanical properties of Raj koroi (Albizia richardiana) wood. Bangladesh Journal of Scientific and Industrial Research, 50(3): 189-192.

Silva, B. N. S., Ferreira, M. A. & Santos, N. J. R. (2019). Biodegradation of eucalyptus wood by wood-rotting fungi. Agrária 2(5): 41-54.

Singh, A. P. & Singh, T. (2014). Biotechnological applications of wood-rotting fungi: A review. Biomass Bioenergy 62: 198-206.

Susi, P., Aktuganov, G., Himanen, J. & Korpela, T. (2011). Biological control of wood decay against fungal infection. Journal of Environmental Management, 92(7): 1681-1689.

Tarvainen, O., Saravesi, K., Pennanen, T., Markkola, A., Suokas, M. & Fritze, H. (2020). Fungal communities in decomposing wood along an energy wood harvest gradient. Forest Ecology and Management, 465: 1-10.

Teacă, C., Roşu, D., Mustaţă, F., Rusu, T., Roşu, L., Roşca, I. & Varganici, C. (2019). Natural Bio-Based products for wood coating and protection against degradation: A review. BioResources 14(2): 4873-4901.

Teleginski, E., Machado, G. O., Christoforo, A. L. L., Silva, D. A. L., Segundinho, P. G. A., Lahr, F. A. R. (2016). Colorimetric technique and remote sensing tools used to evaluate the CCB treatment in wooden posts. Scientia Forestalis, 44(111): 587-593.

Torres-Andrade, P., Cappellazzi, J. & Morrell, J. J. (2019). Fungal colonization patterns of wood exposed out of soil contact in western Oregon. International Biodeterioration & Biodegradation, 137: 14–22.

Trevisan, H., Tieppo, F. F. M., Carvalho, A. G. & Lelis, R. C. C. (2007). Evaluation of physical and mechanical properties of wood from five species as a function of deterioration in two enviroments. Revista Árvore 31(1): 93-101.

Varanda, L. D., Souza, A. M., Almeida, D. H., Icimoto, F. H., Ferro, F. S., Christoforo, A. L. & Lahr, F. A. R. (2014). Physical and mechanical properties of paricá wood species treated with CCB preservative. International Journal of Materials Engineering, 4(2): 150–156.

Vivian, M. A., Santini, E. J., Modes, K. S. & Morais, W. W. C. (2012). Quality of autoclave preservative treatment of Eucalyptus grandis and Eucalyptus cloeziana wood. Scientia Forestalis, 40(96): 445–453.

Witomski, P., Olek, W. & Bonarski, J. T. (2016). Changes in strength of Scots pine wood (Pinus sylvestris L.) decayed by brown rot (Coniophora puteana) and white rot (Trametes versicolor). Construction and Building Materials, 102: 162-166.

Downloads

Published

05/09/2021

How to Cite

LIMA, P. A. F. .; SILVA, C. P. da .; GOUVEIA, F. N. .; BELINI, G. B.; PADILLA, E. R. D. .; HANSTED, A. L. S.; YAMAJI, F. M. .; SETTE JÚNIOR, C. R. Eucalyptus wood treatment and leaching behavior of CCB (Chromated Copper Borate): a field test in Brazilian Midwest. Research, Society and Development, [S. l.], v. 10, n. 11, p. e421101119746, 2021. DOI: 10.33448/rsd-v10i11.19746. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/19746. Acesso em: 19 apr. 2024.

Issue

Section

Agrarian and Biological Sciences