Statistical quality control to emission uniformity in micro sprinkler with autonomous photovoltaic pumping

Authors

DOI:

https://doi.org/10.33448/rsd-v10i11.19867

Keywords:

Control chart; Micro irrigation; Process capacity; Solar energy; Sustainability; Uniformity.

Abstract

This work aimed to evaluate a microsprinkler irrigation system using photovoltaic energy without energy storage. The influence of photovoltaic pumping on irrigation was evaluated from the Emission Uniformity, Shewhart control charts and Process Capacity. The experiment consisted of two amorphous photovoltaic panels connected in parallel, directly connected to a water pump, where the flow of the pumping system was carried out through a ½” tube (main line), to the irrigation system composed of four microsprinklers. The voltage and current parameters were collected, and the power of the photovoltaic system was calculated, while for the irrigation system the pressures of the four microsprinklers were measured to later calculate the flow rate of the irrigation system. The experiment was conducted at the State University of Western Paraná, UNIOESTE, where 25 days of collection were carried out, in the open, at four different times, from 10:00 am to 11:00 am, from 11:05 am to 12:05 pm, from 2:00 pm to 3:00 pm and from 3:05 pm to 4:05 pm . Power generation presented a low coefficient of variation throughout the day, which resulted in flow and pressure stability, culminating in an Emission Uniformity (UE) value qualified as excellent (93.66%) according to the ASAE. The values of energy generation, flow, pressure, and emission uniformity presented a Process Capacity (CP) value above 1.33, defining the process as capable and adequate throughout the analyzed period.

References

Alves, E. S., Araujo, L. M., Alves, J. S. D., Santos, J. E. O., & Zimback, C. R. L. (2015). Geoestatistica aplicada a uniformidade de aplicação de água em sistemas de irrigação por gotejamento usado e novo. Revista Brasileira de Agricultura Irrigada, 9(3), 127-135. https://doi.org/10.7127/rbai.v9n300298.

Andrade, M. G., Vilas Boas, M. A., Siqueira, J. A. C., Dieter, J., Sato, M., Hermes, E., Mercante, E., & Tokura, L. K. (2017). Statistical quality control for the evaluation of the uniformity of microsprinkler irrigation with photovoltaic solar energy. Renewable and Sustainable Energy, 78, 743-753. 10.1016/j.rser.2017.05.012

American Society of Agricultural Engineers. ASAE. (2003). Field evaluation of micro irrigation systems. EP458, St. Joseph, 760−765

Campana, P. E., & H. Li, J. (2013). YanDynamic modelling of a PV pumping system with special consideration on water demand. Appl. Energy, 112, 635-645. https://doi.org/10.1016/j.apenergy.2012.12.073.

Chandel, S. S., Naik, M. N., & Chandel, R. (2017). Review of performance studies of direct coupled photovoltaic water pumping systems and case study. Renewable and Sustainable Energy Reviews, 76, 163 – 175. https://doi.org/10.1016/j.rser.2017.03.019

Chandel, S. S., Naik, M. N., & Chandel, R. (2015). Review of solar photovoltaic water pumping system technology for irrigation and community drinking water supplies. Renewable and Sustainable Energy Reviews, 49, 1084 – 1099. https://doi.org/10.1016/j.rser.2015.04.083

Centro de Referência para Energia Solar e Eólica Sérgio de Sálvio Brito. CRESESB. (2019). Available in: http://www.cresesb.cepel.br/index.php?section=sundata > [accessed September/2019].

Dalri, A. B., Garcia, C. J. B., Zanini, J. R., Faria, R. T., & Palaretti, L. F. (2015). Caracterização técnica e desempenho hidráulico de quatro gotejadores autocompensantes utilizados no Brasil. Revista Ciência Rural, 45, 1439-1444. http://dx.doi.org/10.1590/0103-8478cr20140860.

Douh, B., Boujelben, A., Khila, S., & Bel HahMguidiche, A. (2013). Effect of subsurface drip irrigation system depth on soil water content distribution at different depths and different times after irrigation. Larhyss Journal, 13, 7-16. https://pdfs.semanticscholar.o rg/de3f/97555b4c3501792bb24710a8e95e779e64f9.pdf.

Frigo J. P.Controle estatístico da qualidade na irrigação por aspersão. (2014). Thesis Doctorate. State University of Western Paraná, Cascavel.

Frigo, J. P., Vilas Boas, M. A., Frigo, E. P., Hermes, E., & Tessaro, E. (2013). Irrigação diurna e noturna em um sistema de aspersão convencional em Palotina - PR. Irriga, 18(2), 318-327.

Justi, A. L., Vilas Boas, M. A., & Sampaio, S. C. (2010). Índice de capacidade do processo na avaliação da irrigação por aspersão. Engenharia Agrícola, 30 (2), 264-270. 10.1590/S0100-69162010000200008

López-Luque, R., Martínez, J., Reca, J., & Ruiz, R. (2017). Análisis de viabilidad y gestión del riego en invernaderos mediterráneos con energía solar fotovoltaica. Ribagua, 4, 1–10. https://doi.org/10.1080/23863781.2017.1332806.

Minitab. (2012). User’Guide Release 16 for Windows. State College, Pennsylvania. United States.

Montgomery, D. C. (2009). Introdução ao controle estatístico da qualidade. Tradução Ana Maria Lima de Farias, Vera Regina Lima de Farias e Flores; Revisão técnica Luiz da Costa Laurencel. (4a ed.), LTC.

Oliveira, E. V., Arraes, F. D. D., Torres, W. L. V., Souza, S. A., & Vieira, W. L. (2016). Desempenho de um sistema de irrigação por microaspersão e estimativa da demanda hídrica para diferentes fruteiras no município de Iguatu – CE. Revista Conexoes – Ciencias e tecnologia, 10(2), 40-46.

Pereira, E. B., Martins, F. R., Gonçalvez, A. R., Costa, R. S., Lima, F. J. L., Ruther, R., Abreu S. L., Tiepolo, G. M., Pereira, S. V., & Souza, J. G. (2017). Atlas Brasileiro de Energia Solar. (2a ed.), INPE.

Pimentel Gomes, F. (2000). Curso de estatística experimental. (14a ed.), Degaspari.

Pinho, J. T., & Galdino, M. A. (2014). Manual de engenharia para sistemas fotovoltaicos. <http://www.cresesb.cepel.br/pu blicacoes/download/Manual_de_Engenharia_FV_2014.pdf>

Reca, J., Torrente, C., López-Luque, R., & Martínez, J. (2016). Feasibility analysis of stand alone direct pumping photovoltaic system for irrigation in Mediterranean greenhouses. Renew Energy, 85,1143–1154. https://doi.org/10.1016/j.renene.2015.07.056

Reis, M. M., Paladini, E. P., Khator, S., & Sommer, W. A. (2006). Artificial intelligence approach to support statistical quality control teaching. Computers & Education, 47, 448–464.

Shepovalova, O. V., Belenov, A. T., & Chirkov, S. V. (2020). Review of photovoltaic water pumping system research. Energy Reports, 6, 306 – 324. https://doi.org/10.1016/j.egyr.2020.08.053

Silva, V. P. R., Tavares, A. L., & Sousa, I. F. (2013). Evapotranspiração e coeficientes de cultivo simples e dual do coentro. Revista Horticultura Brasileira, 31, 255-259. http://dx.doi.org/10.1590/S0102-05362013000200013

Tamagi, J. T., Uribe-Opazo, M. A., Johann, J. A., & Vilas Boas, M. A. (2016). Uniformidade de distribuição de água de irrigação por aspersores compensantes e não compensantes em diferentes alturas. Irriga, 21(4), 631 – 647.

Yahyaoui, I., Yahyaoui, A., Chaabene, M., & Tadeo, F. (2016). Energy management for a stand-alone photovoltaic-wind system suitable for rural electrification. Sustain, Cities Soc., 25, 90-101. http,//dx.doi.org/10.1016/j.scs.2015.12.002

Zavala V., López-Luque, R. , Reca, J., Martínez, J., Lao, M. T. (2020). Optimal management of a multisector standalone direct pumping photovoltaic irrigation system. Applied Energy, 260, 114261. https://doi.org/10.1016/j.apenergy.2019.114261

Zhang J., Liu, J., Campana, P. E., Zhang, R., Yan, J., & Gao, X. (2014). Model of evapotranspiration and groundwater level based on photovoltaic water pumping system. Appl. Energy, 136, 1132-1137. http://dx.doi.org/10.1016/j.apenergy.2014.05.045

Zhang, L., Merkley, G. P., & Pinthong, K. (2013). Assessing whole-filed sprinkle irrigation application unifomity. Irrigation Science, 31, 87-105. https://doi.org/10.1007/s00271-011-0294-0

Downloads

Published

11/09/2021

How to Cite

HAUPENTHAL, S. W.; VILAS BOAS, M. A.; SIQUEIRA, J. A. C. .; TOKURA, L. K. .; NASCIMENTO, L. F. J. do . Statistical quality control to emission uniformity in micro sprinkler with autonomous photovoltaic pumping. Research, Society and Development, [S. l.], v. 10, n. 11, p. e581101119867, 2021. DOI: 10.33448/rsd-v10i11.19867. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/19867. Acesso em: 2 jan. 2025.

Issue

Section

Agrarian and Biological Sciences