Actividad de los biomarcadores bioquímicos en saltamontes Abracris flavolineata (De Geer, 1773) (Orthoptera: Acrididae: Ommatolampidinae)

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i11.19877

Palabras clave:

Enzima; Estrés oxidativo; Glutatión S-transferasa; Catalasa.

Resumen

Se utilizan comúnmente biomarcadores bioquímicos en programas de monitoreo ambiental pues son sensibles a la presencia de ciertos contaminantes. Por lo tanto, la respuesta de estos biomarcadores se puede utilizar como indicador de la calidad ambiental. El presente estudio tuvo como objetivo determinar la actividad de las enzimas catalasa (CAT) y glutatión-S-transferasa (GST) del saltamontes Abracris flavolineata (De Geer, 1773) recolectados en dos áreas de remanentes forestales en la Serra da Jiboia (BA) y comparar la actividad de estas enzimas entre machos y hembras. Los ejemplares se recogieron en dos puntos ubicados en la Serra da Jiboia (Bahía, Brasil), denominados 'Baixa de Areia' y 'Baixa Grande'. Los insectos fueron capturados a través de la búsqueda activa con la ayuda de una red entomológica, por la mañana, y un esfuerzo de recolección de 2,5 horas de duración. Se recolectaron 160 individuos en lo total, con 80 ejemplares de cada punto de muestreo, siendo 50 machos y 30 hembras. Después de la identificación, se realizó una incisión en la región lateral del abdomen para extirpar el intestino medio, que se utilizó para extraer las enzimas CAT y GST. Los resultados obtenidos demostraron que la actividad de CAT y de GST no varió significativamente entre los puntos de muestreo, sin embargo, en relación al sexo, la actividad enzimática fue significativamente mayor en los machos (p <0,005), en ambos puntos muestreados. Este estudio es pionero en la evaluación de las respuestas de la actividad de las enzimas CAT y GST en saltamontes de Brasil.

Citas

Aebi, H. (1984). [13] Catalase in vitro. Methods in Enzymology, 105, 121–126. https://doi.org/10.1016/s0076-6879(84)05016-3

Afiyanti, M., & Chen, H. J. (2014). Catalase activity is modulated by calcium and calmodulin in detached mature leaves of sweet potato. Journal of Plant Physiology, 171(2), 35–47. https://doi.org/10.1016/j.jplph.2013.10.003

Ahmad, S. (1992). Biochemical defence of pro-oxidant plant allelochemicals by herbivorous insects. Biochemical Systematics and Ecology, 20(4), 269–296. https://doi.org/10.1016/0305-1978(92)90040-k

Appel, H. M. (2017). [Chapter 7] The chewing herbivore gut lumen: physicochemical conditions and their impact on plant nutrients, allelochemicals, and insect pathogens. In Insect-Plant Interactions - Volume V (pp. 209–224). CRC Press. https://doi.org/10.1201/9780203711651

Augustyniak, M., & Migula, P. (2000). [Chapter 16] Body burden with metals and detoxifying abilities of the grasshopper — Chorthippus brunneus (Thunberg) from industrially polluted areas. Trace Elements — Their Distribution and Effects in the Environment, 4, 423–454. https://doi.org/10.1016/s0927-5215(00)80019-3

Augustyniak, M., Orzechowska, H., Kędziorski, A., Sawczyn, T., & Doleżych, B. (2014). DNA damage in grasshoppers’ larvae – Comet assay in environmental approach. Chemosphere, 96, 180–187. https://doi.org/10.1016/j.chemosphere.2013.10.033

Barbehenn, R. V. (2002). Gut-based antioxidant enzymes in a polyphagous and a graminivorous grasshopper. Journal of Chemical Ecology, 28(7), 1329–1347. https://doi.org/10.1023/a:1016288201110

Barbehenn, R. V. (2003). Antioxidants in grasshoppers: higher levels defend the midgut tissues of a polyphagous species than a graminivorous species. Journal of Chemical Ecology, 29(3), 683–702. https://doi.org/10.1023/a:1022824820855

Barbehenn, R. V., Bumgarner, S. L., Roosen, E. F., & Martin, M. M. (2001). Antioxidant defenses in caterpillars: role of the ascorbate-recycling system in the midgut lumen. Journal of Insect Physiology, 47(4-5), 349–357. https://doi.org/10.1016/s0022-1910(00)00125-6erratum:47:1095

Benavides, M., Fernández-Lodeiro, J., Coelho, P., Lodeiro, C., & Diniz, M. S. (2016). Single and combined effects of Aluminum (Al2O3) and Zinc (ZnO) oxide nanoparticles in a freshwater fish, Carassius auratus. Environmental Science and Pollution Research, 23(24), 24578–24591. https://doi.org/10.1007/s11356-016-7915-3

Birben, E., Sahiner, U. M., Sackesen, C., Erzurum, S., & Kalayci, O. (2012). Oxidative stress and antioxidant defense. World Allergy Organization Journal, 5(1), 9–19. https://doi.org/10.1097/wox.0b013e3182439613

Birnbaum, S. S. L., Rinker, D. C., Gerardo, N. M., & Abbot, P. (2017). Transcriptional profile and differential fitness in a specialist milkweed insect across host plants varying in toxicity. Molecular Ecology, 26(23), 6742–6761. https://doi.org/10.1111/mec.14401

Blengini, I. A. D., Cintra, M. A. M. de U., Cunha, R. P. P. da, & Caiafa, A. N. (Eds.). (2015). Proposta de Unidade de Conservação da Serra da Jiboia (p. 230). Grupo Ambientalista da Bahia (Gambá) / Universidade Federal do Recôncavo da Bahia (UFRB). http://www.gamba.org.br/wp-content/uploads/2016/03/Proposta-Final.pdf

Board, P. G., & Menon, D. (2013). Glutathione transferases, regulators of cellular metabolism and physiology. Biochimica et Biophysica Acta (BBA) - General Subjects, 1830(5), 3267–3288. https://doi.org/10.1016/j.bbagen.2012.11.019

Brahimi, D., Mesli, L., Rahmouni, A., Zeggai, F. Z., Khaldoun, B., Chebout, R., & Belbachir, M. (2020). Why Orthoptera fauna resist of pesticide? First experimental data of resistance phenomena. Data in Brief, 30, 105659. https://doi.org/10.1016/j.dib.2020.105659

Caiafa, A. N. (2015). A Vegetação na Serra da Jiboia. In I. A. D. Blengini, M. A. M. de U. Cintra, R. P. P. da Cunha, & A. N. Caiafa (Eds.), Proposta de Unidade de Conservação da Serra da Jiboia (pp. 72–83). Grupo Ambientalista da Bahia (Gambá).

Cigliano, M. M., Braun, H., Eades, D. C., & Otte, D. (1987, January 21). Homepage: Orthoptera Species File. Version 5.0/5.0. Orthoptera.speciesfile.org; Orthopterists’ Society. http://Orthoptera.SpeciesFile.org

Costa, M. K. M. da, Carvalho, G. S., & Fontanetti, C. S. (2010). Cladistic analysis of Abracrini genera (Orthoptera, Acrididae, Ommatolampinae). Zootaxa, 2451(1), 1–25. https://doi.org/10.11646/zootaxa.2451.1.1

Després, L., David, J.-P., & Gallet, C. (2007). The evolutionary ecology of insect resistance to plant chemicals. Trends in Ecology & Evolution, 22(6), 298–307. https://doi.org/10.1016/j.tree.2007.02.010

Devkota, B., & Schmidt, G. H. (2000). Accumulation of heavy metals in food plants and grasshoppers from the Taigetos Mountains, Greece. Agriculture, Ecosystems & Environment, 78(1), 85–91. https://doi.org/10.1016/s0167-8809(99)00110-3

Felton, G. W., Donato, K., Del Vecchio, R. J., & Duffey, S. S. (1989). Activation of plant foliar oxidases by insect feeding reduces nutritive quality of foliage for noctuid herbivores. Journal of Chemical Ecology, 15(12), 2667–2694. https://doi.org/10.1007/bf01014725

Felton, G. W., & Summers, C. B. (1995). Antioxidant systems in insects. Archives of Insect Biochemistry and Physiology, 29(2), 187–197. https://doi.org/10.1002/arch.940290208

Hou, J., Wang, L., Wang, C., Zhang, S., Liu, H., Li, S., & Wang, X. (2019). Toxicity and mechanisms of action of titanium dioxide nanoparticles in living organisms. Journal of Environmental Sciences, 75, 40–53. https://doi.org/10.1016/j.jes.2018.06.010

Hsu, M. J., Selvaraj, K., & Agoramoorthy, G. (2006). Taiwan’s industrial heavy metal pollution threatens terrestrial biota. Environmental Pollution, 143(2), 327–334. https://doi.org/10.1016/j.envpol.2005.11.023

Kafel, A., Rozpędek, K., Szulińska, E., Zawisza-Raszka, A., & Migula, P. (2014). The effects of cadmium or zinc multigenerational exposure on metal tolerance of Spodoptera exigua (Lepidoptera: Noctuidae). Environmental Science and Pollution Research, 21(6), 4705–4715. https://doi.org/10.1007/s11356-013-2409-z

Keen, J. H., Habig, W. H., & Jakoby, W. B. (1976). Mechanism for the several activities of the Glutathione S-Transferases. The Journal of Biological Chemistry, 251(20), 6183–6188.

Lhano, M. G. (2021). Orthoptera. Catálogo Taxonômico da Fauna do Brasil (CTFB); PNUD. http://fauna.jbrj.gov.br/fauna/faunadobrasil/294

Lijun, L., Xuemei, L., Yaping, G., & Enbo, M. (2005). Activity of the enzymes of the antioxidative system in cadmium-treated Oxya chinensis (Orthoptera Acridoidae). Environmental Toxicology and Pharmacology, 20(3), 412–416. https://doi.org/10.1016/j.etap.2005.04.001

Lushchak, V. I. (2011). Environmentally induced oxidative stress in aquatic animals. Aquatic Toxicology, 101(1), 13–30. https://doi.org/10.1016/j.aquatox.2010.10.006

Migula, P., Łaszczyca, P., Augustyniak, M., Wilczek, G., Rozpȩdek, K., Kafel, A., & Wołoszyn, M. (2004). Antioxidative defence enzymes in beetles from a metal pollution gradient. Biologia - Section Zoology, Bratislava, 59(5), 645–654.

Mittapalli, O., Neal, J. J., & Shukle, R. H. (2007). Antioxidant defense response in a galling insect. Proceedings of the National Academy of Sciences, 104(6), 1889–1894. https://doi.org/10.1073/pnas.0604722104

Mogren, C. L., & Trumble, J. T. (2010). The impacts of metals and metalloids on insect behavior. Entomologia Experimentalis et Applicata, 135(1), 1–17. https://doi.org/10.1111/j.1570-7458.2010.00967.x

Mota, T. A., Winkaler, E. U., Oliveira, G. de & Rocha, S. S. da. (2021). Enzymatic response of Macrobrachium jelskii (Miers, 1877) exposed to water from urban and rural rivers in Bahia, Brazil. Research, Society And Development, 10(6). https://doi.org/10.33448/rsd-v10i6.15638

Nwaubani, B. I., Amaeze, N. H., & Idowu, E. T. (2015). Heavy metal bioaccumulation and oxidative stress in Austroaeschna inermis (Dragon fly) of the Lagos Urban ecosystem. Journal of Environmental Chemistry and Ecotoxicology, 7(1), 11–19. https://doi.org/10.5897/jece2014.0336

Paital, B. (2018). Removing small non-enzymatic molecules for biochemical assay of redox regulatory enzymes; An exemplary comments on “Antioxidant responses in gills and digestive gland of oyster Crassostrea madrasensis (Preston) under lead exposure. Ecotoxicology and Environmental Safety, 154, 337–340. https://doi.org/10.1016/j.ecoenv.2018.01.051

Pavlidi, N., Vontas, J., & Van Leeuwen, T. (2018). The role of glutathione S-transferases (GSTs) in insecticide resistance in crop pests and disease vectors. Current Opinion in Insect Science, 27, 97–102. https://doi.org/10.1016/j.cois.2018.04.007

Pereira, A. S., Shitsuka, D. M., Parreira, F. J. & Shitsuka, R. (2018). Metodologia da Pesquisa Científica. [free e-book]. Santa Maria: RS. Ed. UAB/NTE/UFSM.

Pierezan, B., Webber, B., Vidmar, M. F., Martins, C. A. de Q., Almeida, C. R. de, & Siqueira, L. de O. (2017). Análise do perfil oxidativo de diferentes amostras biológicas de pacientes com lesão de ligamento cruzado anterior. Fisioterapia E Pesquisa, 24(2), 198–204. https://doi.org/10.1590/1809-2950/17409924022017

Roberts, H. R., & Carbonell, C. S. (1981). A revision of the Neotropical genus Abracris and related genera (Orthoptera, Acrididae, Ommatolampinae). Proceedings of the Academy of Natural Sciences of Philadelphia, 133, 1–14.

Rowell, C. H. F., & Behrstock, R. A. (2012). Additions to the acridoid grasshopper fauna of El Salvador. Journal of Orthoptera Research, 21(2), 235–243. https://doi.org/10.1665/034.021.0208

Roy, A., Walker, W. B., Vogel, H., Chattington, S., Larsson, M. C., Anderson, P., Heckel, D. G., & Schlyter, F. (2016). Diet dependent metabolic responses in three generalist insect herbivores Spodoptera spp. Insect Biochemistry and Molecular Biology, 71, 91–105. https://doi.org/10.1016/j.ibmb.2016.02.006

Tangtrakulwanich, K., & Reddy, G. V. P. (2014). Development of insect resistance to plant biopesticides: an overview. In Advances in Plant Biopesticides (pp. 47–62). Springer. https://doi.org/10.1007/978-81-322-2006-0_4

Valavanidis, A., Vlahogianni, T., Dassenakis, M., & Scoullos, M. (2006). Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Ecotoxicology and Environmental Safety, 64(2), 178–189. https://doi.org/10.1016/j.ecoenv.2005.03.013

Wang, R.-L., Liu, S.-W., Baerson, S., Qin, Z., Ma, Z.-H., Su, Y.-J., & Zhang, J.-E. (2018). Identification and functional analysis of a novel cytochrome P450 gene CYP9A105 associated with pyrethroid detoxification in Spodoptera exigua Hübner. International Journal of Molecular Sciences, 19(3), 737. https://doi.org/10.3390/ijms19030737

Wang, Y., Huang, X., Chang, B. H., & Zhang, Z. (2020). Growth performance and enzymatic response of the grasshopper, Calliptamus abbreviatus (Orthoptera: Acrididae), to six plant-derived compounds. Journal of Insect Science, 20(3), 14. https://doi.org/10.1093/jisesa/ieaa049

Wang, Y., Oberley, L. W., & Murhammer, D. W. (2001). Antioxidant defense systems of two lipidopteran insect cell lines. Free Radical Biology and Medicine, 30(11), 1254–1262. https://doi.org/10.1016/s0891-5849(01)00520-2

Wilczek, G., Babczyńska, A., & Wilczek, P. (2013). Antioxidative responses in females and males of the spider Xerolycosa nemoralis (Lycosidae) exposed to natural and anthropogenic stressors. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 157(2), 119–131. https://doi.org/10.1016/j.cbpc.2012.10.005

Wilczek, G., Babczyńska, A., Wilczek, P., Doleżych, B., Migula, P., & Młyńska, H. (2008). Cellular stress reactions assessed by gender and species in spiders from areas variously polluted with heavy metals. Ecotoxicology and Environmental Safety, 70(1), 127–137. https://doi.org/10.1016/j.ecoenv.2007.03.005

Yousef, H. A., Abdelfattah, E. A., & Augustyniak, M. (2017). Evaluation of oxidative stress biomarkers in Aiolopus thalassinus (Orthoptera: Acrididae) collected from areas polluted by the fertilizer industry. Ecotoxicology, 26(3), 340–350. https://doi.org/10.1007/s10646-017-1767-6

Zaoralova, Z., Kupka, J., & Stalmachova, B. (2020). Orthoptera insects as bioaccumulators of potentially toxic elements (Ostrava city, Czech Republic). IOP Conference Series: Earth and Environmental Science, 444, 012057. https://doi.org/10.1088/1755-1315/444/1/012057

Zhang, Y., Sun, G., Yang, M., Wu, H., Zhang, J., Song, S., Ma, E., & Guo, Y. (2011). Chronic accumulation of cadmium and its effects on antioxidant enzymes and malondialdehyde in Oxya chinensis (Orthoptera: Acridoidea). Ecotoxicology and Environmental Safety, 74(5), 1355–1362. https://doi.org/10.1016/j.ecoenv.2011.03.002

Descargas

Publicado

05/09/2021

Cómo citar

SILVA, A. C. S. da; SANTOS, A. S. dos .; SANTANA, T. dos S.; WINKALER, E. U. .; LHANO, M. G. Actividad de los biomarcadores bioquímicos en saltamontes Abracris flavolineata (De Geer, 1773) (Orthoptera: Acrididae: Ommatolampidinae). Research, Society and Development, [S. l.], v. 10, n. 11, p. e409101119877, 2021. DOI: 10.33448/rsd-v10i11.19877. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/19877. Acesso em: 3 abr. 2025.

Número

Sección

Ciencias Agrarias y Biológicas