The increase in absolute theta power and the inhibition of light stimulus in cybersickness

Authors

DOI:

https://doi.org/10.33448/rsd-v10i12.20070

Keywords:

Cybersikness; Inhibitory Control; No-Go; EEG; Absolute theta power.

Abstract

Cybersickness results from the visual vestibule conflict, that is, the incoherence between the sensations related to real movement, in the virtual environment, and the visual stimuli. In response to the virtual environment, one can observe discomforts such as nausea, difficulty in concentrating, and headaches, among others. There are no studies in the literature that analyze the inhibition control of light stimuli in individuals sensitive to Cybersickness. Therefore, this study looked at the control of light stimulus inhibition in Cybersickness. The Sickness Susceptibility Questionnaire was used to divide the subjects into experimental and control groups, and quantify the signs and symptoms, comparing them before and after 3D virtual immersion and. Participants in both groups were examined with EEGq for absolute theta band power in the dorsolateral prefrontal cortex and ventrolateral prefrontal cortex during the light stimulus inhibition task before and after participants watched the 3D video. The partial results showed that there was an increase in the absolute theta band power in both groups comparing the moments before and after, as well as a significant difference in the experimental group compared to the control, for the same moment. Thus, it was observed that individuals who were exposed to 3D virtual reality and developed Cybersikness, showed greater absolute theta band power in the areas studied.

References

Bae, Y. (2016). Saccadic Eye Movement Improves Plantar Sensation and Postural Balance in Elderly Women. The Tohoku Journal of Experimental Medicine, 239(2): 159-164.

Balconi, M., Campanella, S., & Finocchiaro, R. (2017). Web addiction in the brain: Cortical oscillations, autonomic activity, and behavioral measures. Journal of Behavioral Addictions, 6(3): 334-344.

Bastos, V. H., Cunha, M., Veiga, H., Mcdowell, K., Pompeu, F., Cagy, M., Piedade, R., & Ribeiro P. (2004). Analysis of cortical power distribution as a function of learning to type. Rev. Bras Med Esporte, 10: 500-504.

Biernacki, M. P., Kennedy, R. S., & Dziuda, L. (2016). Simulator sickness and its measurement with Simulator Sickness Questionnaire (SSQ). Medycyna Pracy, 67(4): 545-555.

Birenboim, A., Ben-Nun, B. P., Levit, H., & Omer, I. (2021). The Study of Walking, Walkability and Wellbeing in Immersive Virtual Environments. Int J Environ Res Public Health, 18(2): 364.

Bittencourt, J., Machado, S., Teixeira, S., Schlee, G., Salles, J. I, Budde, H., & Sack, A. T (2012). Alpha-band power in the left frontal cortex discriminates the execution of fixed stimulus during saccadic eye movement. Neuroscience letters, 523(2): 148-153.

Bittencourt, J., Velasquez, B., Teixeira, S., Basile, L. F, Salles, JI, Nardi, A. E, & Ribeiro, P. (2013). Saccadic eye movement applications for psychiatric disorders. Neuropsychiatric disease and treatment, 9: 1393-1409.

Blair, C. (2017). Educating executive function. Wiley Interdiscip. Rev CognSci, 8: 1-2.

Bos, J. E. et al. (2018). Motion sickness in motion: from carsickness to cybersickness. Nederlands tijdschrift voor geneeskunde, 162: D1760-D1760.

Brandalize, D., Rodacki, A. L. F, & Israel, V. L (2010). Postural Control After Exposure to Sensory Conflict. Revista Brasileira de Biomecânica, 11(21): 23-29.

Brandalize, D., Rodacki, A. L. F., Brandalize, M., & Israel, VL (2012). Chronic Exposure in an Environment of Sensory Conflict and its Influence on Postural Control. Motriz, 18(4): 721-727.

Brass, M., Rigoni, D., & Haggard, P. (2014). Intentional inhibition: from motor suppression to self-control. Neuropsychologia, 65: 234-235.

Bronstein, A. M., Golding, J. F., & Gresty, M. A (2013). Vertigo and dizziness from environmental motion: visual vertigo, motion sickness, and drivers' disorientation. In: Seminars in neurology. Thieme Medical Publishers, 219-230.

Bruni, S. et al. (2015). Processing and integration of contextual information in monkey ventrolateral prefrontal neurons during selection and execution of goal-directed manipulative actions. Journal of Neuroscience, 35(34): 11877-11890.

Buonocore, A., Purokayastha, S., & Mcintosh, R. D (2017). Saccade Reorienting Is Facilitated by Pausing the Oculomotor Program. Journal of Cognitive Neuroscience, [Epub ahead of print].

Byagowi, A., Mohaddes, D., & Moussavi, Z. (2014). Design and Application of a Novel Virtual Reality Navigational Technology (VRNChair). J Exp Neurosci, r 2(8):7-14.

Carnegie, K., & Rhee, T. (2015). Reducing visual discomfort with HMDs using dynamic depth of field. IEEE computer graphics and applications, 35(5): 34-41.

Cartier, C., Diniz, C., Di Girogio, L., Bittencourt, J., Gongora, M., Tanaka, G. K, & Da Silva, R. D. A (2015). Changes in Absolute Theta Power in Bipolar Patients During a Saccadic Attention Task. Psychiatry research, 228(3): 785-790.

Carvalho, M. R, Costa, R. T, & Nardi, A. E. (2011). Simulator Sickness Questionnaire: Tradução e Adaptação Transcultural. J Bras Psiquiatr, 60(4): 247-52.

Cavanagh, J. F, & Frank, M. J. (2014). Frontal theta as a mechanism for cognitive control. Trends CognSci,18: 414–421.

Chan, J. L, & De Souza, J. F. X. (2013). The effects of attentional load on saccadic task switching. Experimental brain research, 227(3): 301-309.

Chaumillon, R., Romeas, T., Paillard, C., Bernardin, D., Giraudet, G., Bouchard, JF, & Faubert, J. (2017). Enhancing Data Visualisation to Capture the Simulator Sickness Phenomenon: On the Usefulness of Radar Charts. Data in Brief, 13: 301- 305.

Chelen, W. E, Kabrisky, M., & Rogers, S. K. (1993). Spectral analysis of the electroencephalographic response to motion sickness. Aviation, space, and environmental medicine, 64(1): 24-29.

Chen, DJ, Bao, B., Zhao, Y., & So, RH. (2015). Visually Induced Motion Sickness when Viewing Visual Oscillations of Different Frequencies Along the Fore-and-Aft Axis: Keeping Velocity Versus Amplitude Constant. Ergonomics, 59(4): 1-9.

Chikazoe, J. (2010). Localizing performance of go/no-go tasks to prefrontal cortical subregions. Current opinion in psychiatry, 23(3): 267-272.

Dahlman, J., Sjörs, A., Ledin, T., & Falkmer, T. (2008). Could Sound Be Used as a Strategy for Reducing Symptoms of Perceived Motion Sickness? Journal of neuroengineering and rehabilitation, 5(1): 35.

Detandt, S., Bazan, A., Schröder, E., Olyff, G., Kajosch, H., Verbanck, P., & Campanella, S. (2017). A Smoking-Related Background Helps Moderate Smokers to Focus: an Event-Related Potential Study Using a Go-Nogo Task. Clinical Neurophysiology, 128(10): 1872-1885.

Diels, C., & Howarth, P. A. (2013). Frequency Characteristics of Visually Induced Motion Sickness. Human Factors, 55(3): 595-604.

Dennison, M. S., & D’zmura, M. (2017). Cybersickness without the wobble: Experimental results speak against postural instability theory. Applied ergonomics, 58: 215-223.

Dorigueto, R. S., Kasse, C. A., & Silva, R. C. (2012). Cinetose. Revista Equilíbrio Corporal e Saúde, 4(1): 51-58.

Drummond, P. D., & Granston, A. (2004). Facial pain increases nausea and headache during motion sickness in migraine sufferers. Brain, 127(3): 526-534.

França, S. R., & Branco-Barreiro, F. C. A. (2013). Susceptibility to kinetosis in the elderly with vestibular disease. Journal Body Balance and Health, 5(1): 30-35.

França, S. R., Pereza, M. L. V. D., Scharlachb, R. C., & Branco-Barreiro, F. C. A. (2016). Susceptibility to kinetosis in schoolchildren. Rev. Equilíbrio Corporal Saúde, 7(2): 47-50.

Freitas, F. S. A. et al. (2018). The Inhibitory Control in the Cybersickness and Saccadic Ocular Movement as a Parameter”. EC Neurology SI, 1: 40-42.

Ganança, F. F, Ganança, C. F, De Ávila Pires, A. P. B., & Duarte, J. A. (2014). Virtual Reality for the Treatment of Kinetosis: Preliminary Results. Journal Body Balance and Health, 6(1): 3-10.

Garrett, B., Taverner, T., Gromala, D., Tao, G., Cordingley, E., & Sun, C. (2018). Virtual Reality Clinical Research: Promises and Challenges. JMIR Serious Games, 6(4): e10839.

Gavgani, A. M., Nesbitt, K. V., Blackmore, K. L., & Nalivaiko, E. (2017). Profiling Subjective Symptoms and Autonomic Changes Associated with Cybersickness. Autonomic Neuroscience, 203: 41-50.

Gavgani, A. M., Hodgson, D. M., & Nalivaiko, E. (2017). Effects of Visual Flow Direction on Signs and Symptoms of Cybersickness. PloS one, 12(8): e0182790.

Gavgani, A. M., et al. (2018). Cybersickness-related changes in brain hemodynamics: A pilot study comparing transcranial Doppler and near-infrared spectroscopy assessments during a virtual ride on a roller coaster. Physiology & behavior, 191: 56-64.

Golding, J. F. (2016). Motion Sickness. Handbook of Clinical Neurology, 137(3): 372-390.

Golding, J. F. (1998). Motion sickness susceptibility questionnaire revised and its relationship to other forms of sickness. Brain Research Bulletin, 47(5): 507–516.

Grunfeld, E., & Gresty, M. A. (1998). Relationship Between Motion Sickness, Migraine and Menstruation in Crew Members of a “Round The World” Yacht Race. Brain research bulletin, 47(5): 433-436.

Guo, C. C. T., et al. (2017). Correlations between individual susceptibility to visually induced motion sickness and decaying time constant of after-nystagmus. Applied ergonomics, 63: 1-8.

Han, J., Bae, S. H, Suk, & Hyeon-Jeong (2017). Comparison of Visual Discomfort and Visual Fatigue between Head-Mounted Display and Smartphone. Electronic Imaging, 2017(14): 212-217.

Hanslmayr, S., Gross, J., Klimesch, W., & Shapiro, K. L. (2011). The role of α oscillations intemporal attention. Brain Res, 67: 331–343.

Harricharan, S., Nicholson, A. A, Densmore, M., Théberge, J., Mckinnon, M. C, Neufeld, R. W, & Lanius, R. A (2017). Sensory Overload and Imbalance: Resting-State Vestibular Connectivity in PTSD and its Dissociative Subtype. Neuropsychologia, [epub ahead of print].

Herrmann, C. S, Strüber, D., Helfrich, R. F, & Engel, A. K (2016). EEG oscillations: From correlation to causality. International Journal of Psychophysiology, 103: 12–21.

Hoyt, R. E, Lawson, B. D, Mcgee, H. A, Strompolis, M. L, & Mcclellan, M. A (2009). Modafinil as a potential motion sickness countermeasure. Aviation, space, and environmental medicine, 80(8): 709-715.

Huster, R. J, Enriquez-Geppert, S., Lavallee, C. F, Falkenstein, M., & Herrmann, C. S (2013). Electroencephalography of response inhibition tasks: functional networks and cognitive contributions, Int. J. Psychophysiol, 87: 217– 233.

Jensen, O., & Mazaheri, A. (2010). Shaping functional architecture by oscillatory alpha activity: gating by inhibition. Front. Hum. Neurosci, 4: 186.

Ji, J. T. T., So, R. H. Y., & Cheung, R. T. F. (2016). Isolating the effects of vection and optokinetic nystagmus on optokinetic rotation-induced motion sickness. Human factors, 51(5): 739-751.

Kennedy, R. S, Drexler, J. M, Compton, D. E, Stanney, K. M, Lanham, D. S, & Harm, D. L (2003). Configural Scoring of Simulator Sickness, Cybersickness and Space Adaptation Syndrome: Similarities and Differences. Virtual and Adaptive Environments?NTRS, 247: 1-23.

Kennedy, R. S, Lane, N. E, Berbaum, K. S, & Lilienthal, M. G (1993). Simulator Sickness Questionnaire: an Enhanced Method for Quantifying Simulator Sickness. The International Journal of Aviation Psychology, 3(3): 203-220.

Kennedy, R. S., Lanham, D. S., Drexler, J. M., Massey, C. J., & Lilienthal, M. G. (1997). A Comparison of Cybersickness Incidences, Symptom Profiles, Measurement Techniques, and Suggestions for Further Research. Presence: Teleoperators and Virtual Environments, 6(6): 638-644.

Keshavarz, B. et al. (2018). Comparing simulator sickness in younger and older adults during simulated driving under different multisensory conditions. Transportation research part F: traffic psychology and behaviour, 54: 47-62.

Keshavarz, B., & Hecht, H. (2014). Pleasant music as a countermeasure against visually induced motion sickness. Applied ergonomics, 45(3): 521-527.

Keshavarz, B., Riecke, B. E., Hettinger, L. J., & Campos, J. L. (2015). Vection and Visually Induced Motion Sickness: How Are They Related?. Frontiers in Psychology, 6(472): 1-11.

Keshavarz, B., Stelzmann, D., Paillard, A., & Hecht, H. (2015). Visually induced motion sickness can be alleviated by pleasant odors. Experimental brain research, 233(5): 1353-1364.

Kim, Y. Y., Kim, H. J., Kim, E. N., Ko, H. D., & Kim, H. T. (2005). Characteristic Changes in the Physiological Components of Cybersickness. Psychophysiology, 42(5): 616-625.

Kiryu, T., & So, R. H. Y. (2007). Sensation of presence and cybersickness in applications of virtual reality for advanced rehabilitation. J NeuroEngineering Rehabil, 4:34.

Knyazev, G. G. (2010). Antero-posterior EEG spectral power gradient as a correlate of extraversion and behavioral inhibition. The open neuroimaging journal, 4: 114.

Koch, A., Cascorbi, I., Westhofen, M., Dafotakis, M., Klapa, S., & Kuhtz-Buschbeck, J. P. (2018). The Neurophysiology and Treatment of Motion Sickness. Dtsch Arztebl Int, 115(41): 687-696.

Koslucher, F., Haaland, E., & Stoffregen, T. A. (2016). Sex Differences in Visual Performance and Postural Sway Precede Sex Differences in Visually Induced Motion Sickness. Experimental brain research, 234(1): 313-322.

Lackner, J. R. (2014). Motion sickness: more than nausea and vomiting. Experimental brain research, 232(8): 2493-2510.

Lee, C., & Jones, T. A (2017). Neuropharmacological Targets for Drug Action in Vestibular Sensory Pathways. Journal of Audiology & Otology, 21(3): 125.

Lee, Y. J, Lee, S., Chang, M., & Kwak, H. W. (2015). Saccadic Movement Deficiencies in Adults with ADHD Tendencies. ADHD Attention Deficit and Hyperactivity Disorders, 7(4): 271-280.

Levac, D. E, Huber, M. E, & Sternad, D. (2019). Learning and transfer of complex motor skills in virtual reality: a perspective review. J Neuroeng Rehabil, 16(1): 121.

Leung, A. K, & Hon, K. L. (2019). Motion sickness: an overview. Drugs Context, 8(2019): 9-4.

Litleskare, S., MacIntyre, T. E, & Calogiuri, G. (2020). Enable, Reconnect and Augment: A New ERA of Virtual Nature Research and Application. Int J Environ Res Public Health, 17(5): 1738.

Liu, R., Peli, E., & Hwang, A. D (2017). Measuring visually induced motion sickness using wearable devices. Electronic Imaging, 2017(14): 218-223.

Macefield, V. G, & Walton, D. K (2015). Susceptibility to Motion Sickness Is Not Increased Following Spinal Cord Injury. Journal of Vestibular Research, 25(1): 35-39.

Maij, D. L, Van De Wetering, B. J, & Franken, I. H (2017). Cognitive Control in Young Adults with Cannabis Use Disorder: an Event-Related Brain Potential Study. Journal of Psychopharmacology, 31(8): 1015-1026.

Malinska, M., Zuzewicz, K., Bugajska, J., & Grabowski, A (2015). Heart Rate Variability (HRV) During Virtual Reality Immersion. International Journal of Occupational Safety and Ergonomics (JOSE), 21(1): 47–54.

Malińska, M et al. (2014). Subiektywne odczucia wskazujące na występowanie choroby symulatorowej i zmęczenie po ekspozycji na rzeczywistość wirtualną. Medycyna Pracy, 65(3): 361-371.

Meindertsma, T., Kloosterman, N. A, Nolte, G., Engel, A. K, & Donner, TH (2017). Multiple Transient Signals in Human Visual Cortex Associated with an Elementary Decision. Journal of Neuroscience, 37(23): 5744-5757.

Meireles, A. E., Pereira, L. M. S., Oliveira, T. G, Christofoletti, G., & Fonseca, AL (2010). Physiological Neurological Changes in Aging Affect the Balance Maintenance System. Rev Neurocienc, 18(1): 103-108.

Miyazaki, J. et al. (2015). Inter-hemispheric desynchronization of the human MT+ during visually induced motion sickness. Experimental brain research, 233(8): 2421-2431.

Morozetti, P. G., Ganança, C. F., & Chiari, B. M. (2011). Comparison of Different Vestibular Rehabilitation Protocols in Patients with Peripheral Vestibular Dysfunctions. Soc Bras Fonoaudiol, 1(23): 44-50.

Munafo, J., Diedrick, M., & Stoffregen, T. A. (2017). The Virtual Reality Head-Mounted Display Oculus Rift Induces Motion Sickness and Is Sexist in its Effects. Experimental Brain Research, 235(3): 889-901.

Munoz, D. P., Broughton, J. R., Goldring, J. E., & Armstrong, I. T. (1998). Age-Related Performance of Human Subjects on Saccadic Eye Movement Tasks. Experimental Brain Research, 121(4): 391-400.

Naqvi, S. A. A., Badruddin, N., Jatoi, M. A, Malik, A. S., Hazabbah, W., & Abdullah, B (2015). EEG Based Time and Frequency Dynamics Analysis of Visually Induced Motion Sickness (VIMS). Australasian Physical & Engineering Sciences in Medicine, 38(4): 721-729.

Paillard, A. C., Quarck, G., Paolino, F., Denise, P., Paolino, M., Golding, J. F., & Ghulyan-Bedikian, V (2013). Motion sickness susceptibility in healthy subjects and vestibular patients: effects of gender, age and trait-anxiety. J Vestib Res, 23:203–209

Paolozza, A., Munoz, D. P., Brien, D., & Reynolds, J. N. (2016). Immediate Neural Plasticity Involving Reaction Time in A Saccadic Eye Movement Task is Intact in Children with Fetal Alcohol Spectrum Disorder. Alcoholism: Clinical and Experimental. Research, 40(11): 2351-2358.

Park, J. R., Lim, D. W., Lee, S. Y., Lee, H. W., Choi, M. H., & Chung, S. C. (2008). Long-Term Study of Simulator Sickness: Differences in EEG Response Due to Individual Sensitivity. International Journal of Neuroscience, 118(6): 857-865.

Pennel, I. M., & Charron, C. Do (2015). Mental Workload and Presence Experienced when Driving a Real Car Predispose Drivers to Simulator Sickness? An Exploratory Study. Accident Analysis & Prevention, 74: 192-202.

Petit, G., Kornreich, C., Noël, X., Verbanck, P., & Campanella, S (2012). Alcohol-Related Context Modulates Performance of Social Drinkers in a Visual Go/No-Go Task: A Preliminary Assessment of Event-Related Potentials. PLoS One, 7(5): e37466.

Romero, A. C. L., Hayashi, M. S. Y., Kishi, M. S., Cardoso, A. C. V., & Frizzo, A. C. F. (2015). Dizziness Handicap Inventory - Em um Grupo de Pacientes Submetidos a Reabilitação Vestibular Personalizada. Rev. CEFAC, 17(3): 792-800.

Schmal, F (2013). Neuronal Mechanisms and the Treatment of Motion Sickness. Pharmacology, 91(3-4): 229-241.

Sherman, C. R. (2002). Motion sickness: review of causes and preventive strategies. Journal of travel medicine, 9(5): 251-256.

Shupak, A., & Gordon, C. R. (2006). Motion sickness: advances in pathogenesis, prediction, prevention, and treatment. Aviation, space, and environmental medicine, 77(12): 1213-1223.

Stoffregen, T. A., & Riccio, G. E. (1991). An ecological critique of the sensory conflict theory of motion sickness. Ecol. Psychol, 3(3): 159–194.

Swann, NC (2013). et al. Intracranial electroencephalography reveals different temporal profiles for dorsal-and ventro-lateral prefrontal cortex in preparing to stop action. Cerebral Cortex, 23(10): 2479-2488.

Treleaven, J. et al. (2015). Simulator sickness incidence and susceptibility during neck motion-controlled virtual reality tasks. Virtual Reality, 19(3-4): 267-275.

Velasques, B., Bittencourt, J., Diniz, C., Teixeira, S., Basile, L. F, Salles, J. I., & Nardi, A. E. (2013). Changes in saccadic eye movement (SEM) and quantitative EEG parameter in bipolar patients. Journal of affective disorders, 145(3): 378-385.

Velasques, B., Machado, S., Paes, F., Bittencourt, J., Domingues, CA, Basile, LF, & Sack, AT (2011). Hemispheric Differences Over Frontal Theta-Band Power Discriminate Between Stimulus-Versus Memory-Driven Saccadic Eye Movement. Neuroscience letters, 504(3): 204-208.

Zhang, Z., Wang, Q., Liu, X., Song, P., & Yang, B. (2017). Differences in Inhibitory Control Between Impulsive and Premeditated Aggression in Juvenile Inmates. Frontiers in Human Neuroscience, 11: 373.

Zhou, X., Qi, Xue-Lian, & Constantinidis, C. (2016). Distinct roles of the prefrontal and posterior parietal cortices in response inhibition. Cell reports, 14(12): 2765-2773.

Downloads

Published

12/09/2021

How to Cite

FREITAS, F. .; GALENO, K. .; BITTENCOURT, J. .; MAGALHÃES, F.; SILVA, V. N. C. da .; FERNANDES , T. R. S. .; OLIVEIRA, A. T. de .; FERNANDES, J. R. N. .; CASTRO, V. de F. V. de .; BASTOS , V. H. do V. .; TEIXEIRA , S. S. The increase in absolute theta power and the inhibition of light stimulus in cybersickness. Research, Society and Development, [S. l.], v. 10, n. 12, p. e29101220070, 2021. DOI: 10.33448/rsd-v10i12.20070. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/20070. Acesso em: 2 jan. 2025.

Issue

Section

Health Sciences