Volatile matter values change according to the standard utilized?

Authors

DOI:

https://doi.org/10.33448/rsd-v10i12.20476

Keywords:

Proximate analysis; ASTM; ISO; Biomass.

Abstract

In lignocellulosic biomass, the volatile matter can vary from 65 to 85%. Different standards are described in the literature for obtaining this parameter. However, it is observed that some studies of regression models have not considered these differences. They create a volatile matter content database, where the standards for obtaining the same parameter are different. Thus, the objective of the study was to verify whether different standards for volatile matter present statistically equal values. That is if they can be compared with each other, without danger of bias. For this, three types of biomasses of Brazil used were used (eucalyptus chips, pine chips, and sugarcane bagasse). The samples were collected, size reduction, size separation, and stored in the laboratory. Three standards of the American Society for Testing and Materials (ASTM D1762, ASTM E872, ASTM D3175) and one standard of the International Organization for Standardization (ISO 18123) were tested. The experimental design was completely randomized, consisting of four treatments and five replications. The central limit theorem was tested in some literature databases of the volatile matter. The results showed statistical differences when changing the type of standard used. For eucalyptus sawdust, the four standards resulted in methodologies with different averages. Still, the central limit theorem was not observed in some databases of different articles. This was explained by the non-standardization of a single standard when grouping data from different works. Therefore, different volatile content standards produce different results and when comparing values, it is important to take this assumption into account.

References

American Society of Testing Materials (2013). D1762: Standard Test Method for Chemical Analysis of Wood Charcoal. West Conshohocken.

American Society of Testing Materials (2011). D3175: Standard Test Method for Volatile Matter in the Analysis Sample of Coal and Coke. West Conshohocken.

American Society of Testing Materials (2013). E872: Standard Test Method for Volatile Matter in the Analysis of Particulate Wood Fuels. West Conshohocken.

Barbin, D. (2013). Planejamento e Análise Estatística de Experimentos Agronômicos. ESALQ.

Channiwala, S. A., & Parikh, P. P. (2020). A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel. 81 (8): 1051-63.

Debdoubi, A., El Amarti, A., & Colacio, E. (2005). Production of fuel briquettes from esparto partially pyrolyzed. Energy Conversion and Management. 46(11-12): 1877-84.

Demirbaş, A. (1997) Calculation of higher heating values of biomass fuels. Fuel. 76 (5): 431-34.

García, R., Pizarro, C., Lavín, A. G., & Bueno, J. L. (2012). Characterization of Spanish biomass wastes for energy use. Bioresource Technology. 103(1): 249-258.

Hansted, A. L. S., Nakashima, G. T., Martins, M. P., Yamamoto, H., & Yamaji, F. M. (2016). Comparative analyses of fast growing species in different moisture content for high quality solid fuel production. Fuel. 184(15): 180-84.

Hosseinpour, S., Aghbashlo, M., Tabatabaei, M., & Mehrpooya, M. (2017). Estimation of biomass higher heating value (HHV) based on the proximate analysis by using iterative neural network-adapted partial least squares (INNPLS). Energy. 138(1): 473-79.

International Organization for Standardization (2015). EN-ISO 18123: Solid biofuels: Determination of the content of volatile matter.

Jenkins, B. M., Baxter, L. L., Miles, J. R., & Miles, T. R. (1998). Combustion properties of biomass. Fuel Processing Technology. 54(1-3): 17-46.

Küçükbayrak, S., Dürüs, B., Meríçboyu, A. E., & Kadiog̈lu, E. (1991) Estimation of calorific values of Turkish lignites. Fuel. 70(8): 979-81.

Miranda, M. T., Arranz, J. I., Rojas, S., & Montero, I. (2009). Energetic characterization of densified residues from Pyrenean oak forest. Fuel. 88 (11) 2106-12.

Morettin, P. A. (2010). Estatística básica: probabilidade, inferência, volume único. 1ª ed. São Paulo: Pearson.

Nakashima, G. T., Adhmann, I. C. S., Hansted, A. L. S., Belini, G. B., Waldman, W. R., & Yamaji, F. M. (2017). Materiais Lignocelulósicos: Caracterização e Produção de Briquetes. Revista Virtual de Química. 9(1): 150 - 62.

Nimon, K. & Reio Jr, T. G. (2011). Measurement invariance: a foundational principle for quantitative theory building. Human Resource Development Review. 10(2): 198-14.

Nhuchhen, D. R. & Salam, P. A. (2012). Estimation of higher heating value of biomass from proximate analysis: A new approach. Fuel. 99: 55-63.

Nogueira, L. A. H., Lora, E. E. S., Trossero, M. A, & Frisk, T. (2000). Dendroenergia: Fundamentos e Aplicações. Brasília: AEEL,

Özyuğuran, A., & Yaman, S. (2017). Prediction of Calorific Value of Biomass from Proximate Analysis. Energy Procedia. 107: 130-36.

Obernberger, I., & Thek, G. (2004). Physical chatacterisation and chemical composition of densified biomass fuels with regard to their combustion behavior. Biomass and Bioenergy. 27(6): 653 - 69.

Parikh, J., Channiwala, S. A., & Ghosal, G. K. (2005). A correlation for calculating HHV from proximate analysis of solid fuels. Fuel. 84(5): 487-94.

Posom, J., Shrestha, A., Saechua, W., & Sirisomboon, P. (2016). Rapid non-destructive evaluation of moisture content and higher heating value of Leucaena leucocephala pellets using near infrared spectroscopy. Energy. 107(15): 464-72.

Quinn, G. P. & Keough, M. J. (2010). Experimental Design and Data Analysis for Biologists. Cambridge University Press.

Sheng, C., & Azevedo, J. L. T. (2005). Estimating the higher heating value of biomass fuels from basic analysis data. Biomass and Bioenergy. 28(5): 499-07.

Smith, A. K. G., Alesi, L. S., Varanda, L. D., Silva, D. A., Santos, L. O., & Yamaji, F. M (2019). Production and evaluation of briquetes from urban pruning residue and sugarcane bagasse. Rev. Bras. Eng. Agríc. Ambiental. 23(2): 138-43.

Suárez, J. A., Luengo, C. A., Felfli, F. F., Bezzon, G., & Beatón, P. A. (2000). Thermochemical Properties of Cuban Biomass. Energy Sources. 22(10): 851-57.

Thy, P., Esbensen, K. H., & Jenkins, B. M. (2009). On representative sampling and reliable chemical characterization in thermal biomass conversion studies. Biomass and Bioenergy. 33(11): 1513-19.

Thipkhunthod, P., Meeyoo, V., Rangsunvigit, P., Kitiyanan, B., Seimanond, K., & Rirksomboon, T. (2005). Predicting the heating value of sewage sludges in Thailand from proximate and ultimate analyses. Fuel. 84 (7-8): 849-57.

Tortosa Masiá, A. A., Buhre, B. J. P., Gupta, R. P., & Wall, T. F. (2007). Characterising ash of biomass and waste, Fuel Processing Technology. 88(11-12): 1071-81.

Uzun, H., Yildiz, Z., Goldfarb, J. L., & Ceylan, S. (2017) Improved prediction of higher heating value of biomass using an artificial neural network model based on proximate analysis. Bioresource Technology. 234: 122-30.

Vaux, D. L., Fidler, F., & Cumming, G. (2012). Replicates and repeats--what is the difference and is it significant? A brief discussion of statistics and experimental design. EMBO reports. 13: 291–96.

Yang, X., Wang, H., Strong, J., Xu, S., Liu, S., Lu, K., Sheng, K., Guo, J., Che, L., He, L., Ok, Y. S., Yuan, G., Shen, Y., & Chen, X. (2017). Thermal Properties of Biochars Derived from Waste Biomass Generated by Agricultural and Forestry Sectors. Energies. 10(4): 469-81.

Yin, C. Y. (2011). Prediction of higher heating values of biomass from proximate and ultimate analyses. Fuel. 90 (3): 1128-32.

Zhang, Z., Zhang, Y., Zhou, Y., Ahmad, R., Pemberton-Pigott, C., Annegarn, H., & Dong, R. (2017). Systematic and conceptual errors in standards and protocols for thermal performance of biomass stoves. Renewable and Sustainable Energy Reviews. 72: 1343-54.

Downloads

Published

02/10/2021

How to Cite

SILVA, D. A. da; HANSTED, A. L. S. .; NAKASHIMA, G. T. .; PADILLA, E. R. D. .; PEREIRA, J. C. .; YAMAJI, F. M. . Volatile matter values change according to the standard utilized?. Research, Society and Development, [S. l.], v. 10, n. 12, p. e291101220476, 2021. DOI: 10.33448/rsd-v10i12.20476. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/20476. Acesso em: 27 nov. 2024.

Issue

Section

Exact and Earth Sciences