Experimental model in vitro of white piedra and evaluation of the susceptibility profile of Trichosporon against thiophene-tiosemicarbazone derivatives (L10)

Authors

DOI:

https://doi.org/10.33448/rsd-v10i12.20636

Keywords:

Ringworm; Trichosporon spp.; Pathogenicity; Antibacterial activity; Thiocompounds.

Abstract

The aim of the present study was to evaluate the in vitro pathogenicity potential and the susceptibility profile of Trichosporon spp. to thiophene-thiosemicarbazone derivatives(L10). At first, a taxonomic review of 3 Trichosporon spp. of clinical importance stored at the URM Micoteca of the Federal University of Pernambuco (UFPE). Posteriorly, the capacity of these species to grow in vitro in healthy hair (free from chemical treatments) at 25 °C and 37 °C for a period of 10 days was evaluated. After this period, direct examination of the hair was performed, using 10% KOH, and cultured in Sabouraud Agar medium with chloramphenicol of the samples that grew in the hair, as well as analyzes of the macro and micromorphology of these fungal species. Finaly, the in vitro susceptibility profile of these fungal species to thiophene-thiosemicarbazone (L10) derivatives was performed according to the Clinical and Laboratory Standards Institute (CLSI) to determine minimal inhibitory concentrations (MICs) and minimal fungicidal concentrations (MFCs). Through the in vitro experimental model, it was possible to observe the following species: Trichosporon asahii, T. ovoides and T. cutaneum are etiological agents of white piedra and present pathogenic potential even in an in vitro experimental modelwithout the need for synergism with other types of microorganisms. Through the analysis of the in vitro susceptibility profile, it was possible to observe that the new thiophene derivatives tested are not effective to inhibit the growth of the evaluated Trichosporon species, thus being inadequate for the treatment of clinical manifestations observed in white piedra. In conclusion, this study showed that it is possible to cultivate Trichosporon in an in vitro model and that searches for other effective therapeutic approaches are necessary to combat infections caused by fungi of the genus Trichosporon.

Author Biography

Isabella Macário Ferro Cavalcanti, Universidade Federal de Pernambuco

Professora Associada I do Centro Acadêmico de Vitória da Universidade Federal de Pernambuco (CAV/UFPE). Membro permanente do Programa de Pós-Graduação de Mestrado Profissional em Ensino de Biologia em Rede Nacional (PROFBIO) e do Programa de Pós-Graduação em Biologia Aplicada à Saúde (PPGBAS) da UFPE. Chefe e Pesquisadora do Setor de Microbiologia Clínica do Laboratório de Imunopatologia Keizo Asami da UFPE (LIKA/UFPE). Membro da Sociedade Brasileira de Microbiologia. Líder do grupo de pesquisa Microbiologia clínica e Novas Abordagens Terapêuticas (MicroNAT). Doutora pelo Programa de Pós-graduação em Ciências Biológicas (PPGCB) da UFPE. Mestre pelo Programa de Pós-graduação em Inovação Terapêutica (PPGIT) da UFPE. Especialista em Microbiologia Clínica pela Universidade de Pernambuco (UPE). Bacharel em Biomedicina pela UFPE.

References

Almeida Jr., A. S. A. D. (2017). Avaliação da atividade esquitossomicida e análise ultraestrutural de derivados indol-tiossemicarbazonas. Attena Repositório Digital. https://repositorio.ufpe.br/handle/123456789/32439.

Arendrup, M. C., Boekhout, T., Akova, M., Meis, J. F., Cornely, O. A., Lortholary, O., & ESCMID EFISG study group and ECMM. (2014). ESCMID and ECMM joint clinical guidelines for the diagnosis and management of rare invasive yeast infections. Clinical Microbiology and Infection, 20, 76-98.

Azizi, A., Amirzadeh, Z., Rezai, M., Lawaf, S., & Rahimi, A. (2016). Effect of photodynamic therapy with two photosensitizers on Candida albicans. Journal of Photochemistry and Photobiology B: Biology, 158, 267-273.

Barnett, J. A. (2000). Yeasts: Characteristics and Identification, (3a ed.), Cambridge University Press: 1139.

Bharti, S. K., Nath, G., Tilak, R., & Singh, S. K. (2010). Synthesis, anti-bacterial and anti-fungal activities of some novel Schiff bases containing 2, 4-disubstituted thiazole ring. European journal of medicinal chemistry, 45(2), 651-660.

Carvalho, A. M. R. D., Melo, L. R. B. D., Moraes, V. L., & Neves, R. P. (2008). Invasive Trichosporon cutaneum infection in an infant with wilms' tumor. Brazilian Journal of Microbiology, 39(1), 59-60.

Cawley, M. J., Braxton, G. R., Haith Jr, L. R., Reilly, K. J., Guilday, R. E., & Patton, M. L. (2000). Trichosporon beigelii infection: experience in a regional burn center. Burns, 26(5), 483-486.

Cordeiro, R. D. A., Pereira, L. M. G., de Sousa, J. K., Serpa, R., Andrade, A. R. C., Portela, F. V. M., & Rocha, M. F. G. (2019). Farnesol inhibits planktonic cells and antifungal-tolerant biofilms of Trichosporon asahii and Trichosporon inkin. Medical mycology, 57(8), 1038-1045.

Colombo, A. L., Padovan, A. C. B., & Chaves, G. M. (2011). Current knowledge of Trichosporon spp. and Trichosporonosis. Clinical microbiology reviews, 24(4), 682-700.

Clinical and Laboratory Standards Institute (CLSI) (2008). Reference method for broth dilution antifungal susceptibility testing of yeasts. Edition M27-A3, CLSI, Wayne, Pennsylvania, USA.

De Aguiar Cordeiro, R., et al. (2015). Trichosporon inkin biofilms produce extracellular proteases and exhibit resistance to antifungals. Journal of medical microbiology, 64(11), 1277-1286.

El Attar, Y., Atef Shams Eldeen, M., Wahid, R. M., & Alakad, R. (2020). Efficacy of topical vs combined oral and topical antifungals in white piedra of the scalp. Journal of Cosmetic Dermatology, 00, 1–6.

Estrela, C. (2018). Metodologia Científica: Ciência, Ensino, Pesquisa. Editora Artes Médicas.

Francisco, E. C., de Almeida Junior, J. N., de Queiroz Telles, F., Aquino, V. R., Mendes, A. V. A., de Andrade Barberino, M. G. M., & Colombo, A. L. (2019). Species distribution and antifungal susceptibility of 358 Trichosporon clinical isolates collected in 24 medical centres. Clinical Microbiology and Infection, 25(7), 909-e1.

Iturrieta-González, I. A., Padovan, A. C. B., Bizerra, F. C., Hahn, R. C., & Colombo, A. L. (2014). Multiple species of Trichosporon produce biofilms highly resistant to triazoles and amphotericin B. PLoS One, 9(10), e109553.

Jannic, A., et al. (2018). Trichosporon inkin causing invasive infection with multiple skin abscesses in a renal transplant patient successfully treated with voriconazole. JAAD case reports, 4(1), 27.

Jesus, S, D. F. F. D. (2018). Caracterização molecular e análise da expressão gênica de adesivas na levedura emergente Trichosporon asahii. Biblioteca Digital de Teses e Dissertações. https://bdtd.unifal-mg.edu.br:8443/handle/tede/1435.

Junqueira, J. C., et al. (2012). Photodynamic inactivation of biofilms formed by Candida spp., Trichosporon mucoides, and Kodamaea ohmeri by cationic nanoemulsion of zinc 2, 9, 16, 23-tetrakis (phenylthio)-29H, 31H-phthalocyanine (ZnPc). Lasers in medical science, 27(6), 1205-1212.

Kuo, S. H., Lu, P. L., Chen, Y. C., Ho, M. W., Lee, C. H., Chou, C. H., & Lin, S. Y. (2020). The epidemiology, genotypes, antifungal susceptibility of Trichosporon species, and the impact of voriconazole on Trichosporon fungemia patients. Journal of the Formosan Medical Association. 120(9):1686-1694

Lan, Y., Lu, S., Zheng, B., Tang, Z., Li, J., & Zhang, J. (2020). Combinatory Effect of ALA‐PDT and Itraconazole Treatment for Trichosporon asahii. Lasers in Surgery and Medicine. 53(5):722-730

Li, H. M., Du, H. T., Liu, W., Wan, Z., & Li, R. Y. (2005). Microbiological characteristics of medically important Trichosporon species. Mycopathologia, 160(3), 217-225.

Li, H., Guo, M., Wang, C., Li, Y., Fernandez, A. M., Ferraro, T. N., ... & Chen, Y. (2020). Epidemiological study of Trichosporon asahii infections over the past 23 years. Epidemiology & Infection, 148: e169.

Liao, Y., Lu, X., Yang, S., Luo, Y., Chen, Q., & Yang, R. (2015, December). Epidemiology and outcome of Trichosporon fungemia: a review of 185 reported cases from 1975 to 2014. Open forum infectious diseases 2(4), 141.

Macêdo, D. P. C., Neves, R. P., Magalhães, O. M. C., Souza-Motta, C. M. D., & Queiroz, L. A. D. (2005). Pathogenic aspects of Epidermophyton floccosum langeron et milochevitch as possible aethiological agent of Tinea capits. Brazilian Journal of Microbiology, 36(1), 36-37.

Martínez-Herrera, E., Duarte-Escalante, E., del Rocío Reyes-Montes, M., Arenas, R., Acosta-Altamirano, G., Moreno-Coutiño, G., & Frías-De-León, M. G. (2021). Molecular identification of yeasts from the order Trichosporonales causing superficial infections. Revista Iberoamericana de Micología. 38(3):119-124.

Moretti-Branchini, M. L., Fukushima, K., Schreiber, A. Z., Nishimura, K., Papaiordanou, P. M., Trabasso, P., & Miyaji, M. (2001). Trichosporon species infection in bone marrow transplanted patients. Diagnostic microbiology and infectious disease, 39(3), 161-164.

Mooty, M. Y., Kanj, S. S., Obeid, M. Y., Hassan, G. Y., & Araj, G. F. (2001). A case of Trichosporon beigelii endocarditis. European Journal of Clinical Microbiology and Infectious Diseases, 20(2), 139.

Padovan, A. C. B., Almeida, L. A. D., Gouveia, V. A., & Dias, A. L. T. (2019). Análise da localização, da expressão gênica e predição estrutural de adesinas hipotéticas no patógeno emergente Trichosporon asahii. Biblioteca Digital de Teses e Dissertações. http://bdtd.unifal-mg.edu.br:8080/handle/tede/1598.

Paphitou, N. I., Ostrosky-Zeichner, L., Paetznick, V. L., Rodriguez, J. R., Chen, E., & Rex, J. H. (2002). In vitro antifungal susceptibilities of Trichosporon species. Antimicrobial agents and chemotherapy, 46(4), 1144-1146.

Pereira, L. M. G. (2018). Atividade inibitória da molécula de Quorum Sensing Farnesol frente à cepas de Trichosporon asahii e T. inkin. Repositório institucional da UFC. http://www.repositorio.ufc.br/handle/riufc/35153.

Pfaller, M. A., & Diekema, D. J. (2004). Rare and emerging opportunistic fungal pathogens: concern for resistance beyond Candida albicans and Aspergillus fumigatus. Journal of clinical microbiology, 42(10), 4419-4431.

Rizzitelli, G., Guanziroli, E., Moschin, A., Sangalli, R., & Veraldi, S. (2016). Onychomycosis caused by Trichosporon mucoides. International Journal of Infectious Diseases, 42, 61-63.

Robles-Tenório, A., Lepe-Moreno, K. Y., & Mayorga-Rodríguez, J. (2020). White piedra, a rare superficial mycosis: an update. Current Fungal Infection Reports, 14(3), 197-202.

Rodriguez-Tudela, J. L., Diaz-Guerra, T. M., Mellado, E., Cano, V., Tapia, C., Perkins, A., & Cuenca-Estrella, M. (2005). Susceptibility patterns and molecular identification of Trichosporon species. Antimicrobial Agents and Chemotherapy, 49(10), 4026-4034.

Shang, S. T., Yang, Y. S., & Peng, M. Y. (2010). Nosocomial Trichosporon asahii fungemia in a patient with secondary hemochromatosis: a rare case report. Journal of Microbiology, Immunology and Infection, 43(1), 77-80.

Sherf, A.F. (1943). The method for maintaining Phytomonas sepedomica for long periods without transf. Phytopathology, 31 (3), 30-32.

Taverna, C. G., Cordoba, S., Murisengo, O. A., Vivot, W., Davel, G., & Bosco-Borgeat, M. E. (2014). Molecular identification, genotyping, and antifungal susceptibility testing of clinically relevant Trichosporon species from Argentina. Sabouraudia, 52(4), 356-366.

Published

26/09/2021

How to Cite

CAVALCANTI, I. M. F. .; FALCÃO, J. A. L. .; FERREIRA, Y. L. A. .; INÁCIO, C. P. .; MACÊDO, D. P. C. .; MIRANDA, C. C. C. .; NEVES, R. P. . Experimental model in vitro of white piedra and evaluation of the susceptibility profile of Trichosporon against thiophene-tiosemicarbazone derivatives (L10). Research, Society and Development, [S. l.], v. 10, n. 12, p. e406101220636, 2021. DOI: 10.33448/rsd-v10i12.20636. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/20636. Acesso em: 4 nov. 2024.

Issue

Section

Health Sciences