Technological advances in probiotic stability in yogurt: a review

Authors

DOI:

https://doi.org/10.33448/rsd-v10i12.20646

Keywords:

Probiotics; Yoghurt; Emerging technology; Functional foods.

Abstract

Yogurt is one of the fermented dairy products widely produced and recognized around the world, in addition it is considered excellent vehicle for probiotics, which are live microorganisms that provide beneficial effects to the individual when consumed in adequate amounts. Thus, the aim of this literature review was to address the factors that affect the viability of probiotics in yogurt during the processing steps (heat treatment, homogenization, and fermentation), storage (acidification rate, pH, carbohydrate fraction, organic acids, oxygen, temperature, time, water activity and moisture content), consumption (gastric juice and bile salts) and shelflife (addition of other ingredients and packaging). However, to preserve the probiotics stability in yogurt and improve the quality and shelf life of products, several new technologies such as microencapsulation, ohmic heating, ultrasound, the addition of prebiotics, and advances in the use of packaging in production with an emphasis on improving the viability, are used and allow secure the minimum recommended level of at probiotics least 109  CFU per gram of product when consumed to have a beneficial effect on health and, moreover, they guarantee the growth and probiotics protection without influencing the flavor, from the production stage until the delivery of these in the gastrointestinal tract. Therefore, it is recognized from this research the need to optimize new technologies in the food environment, seeking to improve consumer products with increasingly favorable purposes for health.  

References

Afzaal, M., Khan, A. U., Saeed, F., Ahmed, A., Ahmad, M. H., Maan, A. A., & Hussain, S. (2019). Functional exploration of free and encapsulated probiotic bacteria in yogurt and simulated gastrointestinal conditions. Food science & nutrition, 7(12), 3931-3940.

Akalin, A. S., Unal, G., & Dinkci, N. (2018). Angiotensin‐converting enzyme inhibitory and starter culture activities in probiotic yogurt: Effect of sodium-calcium caseinate and whey protein concentrate. International Journal of Dairy Technology, 71, 185-194.

Alkanan, Z. T, Altemimi, A. B, Al-Hilphy, A. R, Watson, D. G, & Pratap-Singh, A. (2021). Aquecimento ôhmico na indústria de alimentos: desenvolvimentos em conceitos e aplicações durante 2013–2020. Ciências Aplicada , 11 (6), 2507.

Akdeniz, V., & Akalın, A. S. (2019). A new approach for yogurt and ice cream production: High-intensity ultrasound. Trends in Food Science & Technology, 86, 392-398.

Akin, Z., & Ozcan, T. (2017). Functional properties of fermented milk produced with plant proteins. LWT, 86, 25-30.

Aryana, K. J., & Olson, D. W. (2017). A 100-Year Review: Yogurt and other cultured dairy products. Journal of Dairy Science, 100(12), 9987-10013.

Asgari, S., Pourjavadi, A., Licht, T. R., Boisen, A., & Ajalloueian, F. (2020). Polymeric carriers for enhanced delivery of probiotics. Advanced Drug Delivery Reviews.

Atraki, R., & Azizkhani, M. (2021). Survival of probiotic bacteria nano encapsulated within biopolymers in a simulated gastrointestinal model. Innovative Food Science & Emerging Technologies, 102750.

Bhargava, N., Mor, R. S., Kumar, K., & Sharanagat, V. S. (2020). Advances in the application of ultrasound in food processing: A review. Ultrasonics sonochemistry, 105293.

Barros, C. P., Pires, R. P. S., Guimarães, J. T., Abud, Y. K. D., Almada, C. N., Pimentel, T. C., Sant'anna, C., De-melo, L. D. B., Duarte, M. C. K. H., Silva, M. C. (2021). Ohmic heating as a method of obtaining paraprobiotics: impacts on cell structure and viability by flow cytometry. Food Research International, 140, 110061.

Behera, S. S., & Panda, S. K. (2020). Ethnic and industrial probiotic foods and beverages: efficacy and acceptance. Current Opinion In Food Science, 32, 29-36.

Bosnea, L. A., Kopsahelis, N., Kokkali, V., Terpou, A., & Kanellaki, M. (2017). Production of a novel probiotic yogurt by incorporation of L. casei enriched fresh apple pieces, dried raisins, and wheat grains. Food and Bioproducts Processing, 102, 62-71. (b)

Bosnea, L. A., Moschakis, T., Nigam, P. S., & Biliaderis, C. G. (2017). Growth adaptation of probiotics in biopolymer-based coacervate structures to enhance cell viability. LWT, 77, 282-289. (a)

Călinoiu, L. F., Vodnar, D. C., & Precup, G. (2016). The probiotic bacteria viability under different conditions. Bulletin UASVM Food Science and Technology, 73(2), 55-60.

Cappato, L. P., Ferreira, M. V. S., Pires, R. P., Cavalcanti, R. N., Bisaggio, R. C., Freitas, M. Q., & Cruz, A. G. (2018). Whey acerola-flavored drink submitted ohmic heating processing: Is there an optimal combination of the operational parameters? Food Chemistry, 245, 22-28.

Cappato, L. P., Ferreira, M. V., Guimaraes, J. T., Portela, J. B., Costa, A. L., Freitas, M. Q., & Cruz, A. G. (2017). Ohmic heating in dairy processing: Relevant aspects for safety and quality. Trends in Food Science & Technology, 62, 104-112.

Carrillo-Lopez, L. M., Garcia-Galicia, I. A., Tirado-Gallegos, J. M., Sanchez-Vega, R., Huerta-Jimenez, M., Ashokkumar, M., & Alarcon-Rojo, A. D. (2021). Recent advances in the application of ultrasound in dairy products: Effect on functional, physical, chemical, microbiological, and sensory properties. Ultrasonics Sonochemistry, 105467.

CFIA – Canadian Food Inspection Agency. Health claims on food labels: Nutrient function claims. 2019. <http://www.inspection.gc.ca/food/labelling/food-labelling-for-industry/health-claims/eng/1392834838383/1392834887794?chap=9>

Champagne, C. P., da Cruz, A. G., & Daga, M. (2018). Strategies to improve the functionality of probiotics in supplements and foods. Current Opinion in Food Science, 22, 160-166.

Da Silva, T. M., de Deus, C., de Souza Fonseca, B., Lopes, E. J., Cichoski, A. J., Esmerino, E. A., & de Menezes, C. R. (2019). The effect of enzymatic crosslinking on the viability of probiotic bacteria (Lactobacillus acidophilus) encapsulated by complex coacervation. Food Research International, 125, 108577.

Dahroud, B. D., Mokarram, R. R., Khiabani, M. S., Hamishehkar, H., Bialvaei, A. Z., Yousefi, M., & Kafil, H. S. (2016). Low-intensity ultrasound increases the fermentation efficiency of Lactobacillus casei subsp. casei ATTC 39392. International journal of biological macromolecules, 86, 462-467.

Das, K., Choudhary, R., & Thompson-Witrick, K. A. (2019). Effects of new technology on the current manufacturing process of yogurt-to increase the overall marketability of yogurt. Lwt, 108, 69-80.

De Prisco, A., & Mauriello, G. (2016). Probiotication of foods: A focus on microencapsulation tool. Trends in Food Science & Technology, 48, 27-39.

Delgado-Fernández, P., Corzo, N., Olano, A., Hernández-Hernández, O., & Moreno, F. J. (2019). Effect of selected prebiotics on the growth of lactic acid bacteria and physicochemical properties of yoghurts. International Dairy Journal, 89, 77-85.

Delgado-Fernández, P., Hernández-Hernández, O., Olano, A., Moreno, F. J., & Corzo, N. (2020). Probiotic viability in yoghurts containing oligosaccharides derived from lactulose (OsLu) during fermentation and cold storage. International Dairy Journal, 102, 104621.

Dinkçi, N., Akdeniz, V., & Akalin, A. S. (2019). Survival of probiotics in functional foods during shelf life. In Food quality and shelf life (pp. 201-233). Academic Press.

Dimitrellou, D., Kandylis, P., Lević, S., Petrović, T., Ivanović, S., Nedović, V., & Kourkoutas, Y. (2019). Encapsulation of Lactobacillus casei ATCC 393 in alginate capsules for probiotic fermented milk production. LWT, 116, 108501.

Fabersani, E., Grande, M. V., Aráoz, M. V. C., Zannier, M. L., Sánchez, S. S., Grau, A., & Honoré, S. M. (2018). Metabolic effects of goat milk yogurt supplemented with yacon flour in rats on a high-fat diet. Journal of Functional Foods, 49, 447-457.

FAO/WHO (2002). Guidelines for the evaluation of probiotics in food. Report of a Joint FAO/WHO working for a group on drafting guidelines for the evaluation of probiotics in food, London Ontario, Canada, April 30 and May 1, 2002. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy; World

Health Organization (WHO), Geneva, Switzerland.

Fazilah, N. F., Ariff, A. B., Khayat, M. E., Rios-Solis, L., & Halim, M. (2018). Influence of probiotics, prebiotics, synbiotics, and bioactive phytochemicals on the formulation of functional yogurt. Journal of Functional Foods, 48, 387-399.

Frakolaki, G., Giannou, V., Kekos, D., & Tzia, C. (2021). A review of the microencapsulation techniques for the incorporation of probiotic bacteria in functional foods. Critical reviews in food science and nutrition, 61(9), 1515-1536. (a)

Frakolaki, G., Katsouli, M., Giannou, V., & Tzia, C. (2020). Novel encapsulation approach for Bifidobacterium subsp. lactis (BB-12) viability enhancement through its incorporation into a double emulsion before the extrusion process. LWT, 130, 109671. (b)

Global Market Insights. Industry Reports of Probiotics, https://www.gminsights.com/industry-analysis/probiotics-market (2020).

Guimarães, J. T., Balthazar, C. F., Scudino, H., Pimentel, T. C., Esmerino, E. A., Ashokkumar, M., ... & Cruz, A. G. (2019). High-intensity ultrasound: a novel technology for the development of probiotic and prebiotic dairy products. Ultrasonics sonochemistry, 57, 12-21.

Gouda, A. S., Adbelruhman, F. G., Alenezi, H. S., Mégarbane, B. (2020). Theoretical benefits of yogurt-derived bioactive peptides and probiotics in COVID-19 patients – A narrative review and hypotheses. Saudi Journal of Biological Sciences,46, 225-252.

Gavahian, M., Tiwari, B. K, Chu, Y. H, Ting, Y., & Farahnaky, A. (2019). Textura dos alimentos afetada pelo aquecimento ôhmico: mecanismos envolvidos, descobertas recentes, benefícios e limitações. Trends in Food Science & Technology, 86, 328-339.

Halim, M., Mustafa, N. A. M., Othman, M., Wasoh, H., Kapri, M. R., & Ariff, A. B. (2017). Effect of encapsulant and cryoprotectant on the viability of probiotic Pediococcus acidilactici ATCC 8042 during freeze-drying and exposure to high acidity, bile salts, and heat. LWT-Food Science and Technology, 81, 210-216.

Huang, G., Chen, S., Dai, C., Sun, L., Sun, W., Tang, Y., & Ma, H. (2017). Effects of ultrasound on microbial growth and enzyme activity. Ultrasonics Sonochemistry, 37, 144-149.

Jouki, M., Khazaei, N., Rezaei, F., & Taghavian-Saeid, R. (2021). Production of synbiotic freeze-dried yogurt powder using microencapsulation and cryopreservation of L. Plantarum in alginate-skim milk microcapsules. International Dairy Journal, 105133.

Khubber, S., Chaturvedi, K., Thakur, N., Sharma, N., & Yadav, S. K. (2021). Low-methoxyl pectin stabilizes low-fat set yogurt and improves their physicochemical properties, rheology, microstructure, and sensory liking. Food Hydrocolloids, 111, 106240.

Kim, S. S., Jo, Y., & Kang, D. H. (2017). Combined inhibitory effect of milk fat and lactose for inactivation of foodborne pathogens by ohmic heating. LWT, 86, 159-165.

Kumar, A., & Kumar, D. (2016). Development of antioxidant-rich fruit supplemented probiotic yogurts using free and microencapsulated Lactobacillus rhamnosus culture. Journal of food science and technology, 53(1), 667-675.

Ladero, V., & Sánchez, B. (2017). Molecular and technological insights into the aerotolerance of anaerobic probiotics: examples from bifidobacteria. Current Opinion in Food Science, 14, 110-115.

Li, Y., Shabani, K. I., Qin, X., Yang, R., Jin, X., Ma, X., & Liu, X. (2019). Effects of cross-linked inulin with different polymerization degrees on physicochemical and sensory properties of set-style yogurt. International Dairy Journal, 94, 46-52.

Majid, I., Nayik, G. A., Dar, S. M., & Nanda, V. (2018). Novel food packaging technologies: Innovations and future prospective. Journal of the Saudi Society of Agricultural Sciences, 17(4), 454-462.

Meybodi, N. M., Mortazavian, A. M., Arab, M., & Nematollahi, A. (2020). Probiotic viability in yogurt: A review of influential factors. International Dairy Journal, 109, 104793.

Moineau-Jean, A., Champagne, C. P., Roy, D., Raymond, Y., & LaPointe, G. (2019). Effect of Greek-style yogurt manufacturing processes on the starter and probiotic bacteria populations during storage. International Dairy Journal, 93, 35-44.

Moineau-Jean, A., Raymond, Y., Sabik, H., Graveline, N., Champagne, C. P., Roy, D., & LaPointe, G. (2020). Effect of manufacturing processes and storage on aroma compounds and sensory properties of yogurt. International Dairy Journal, 105, 104662.

Mudgil, D., Barak, S., Patel, A., & Shah, N. (2018). Partially hydrolyzed guar gum as a potential prebiotic source. International journal of biological macromolecules, 112, 207-210.

Ojha, K. S., Mason, T. J., O’Donnell, C. P., Kerry, J. P., & Tiwari, B. K. (2017). Ultrasound technology for food fermentation applications. Ultrasonics sonochemistry, 34, 410-417.

Parvarei, M. M., Fazeli, M. R., Mortazavian, A. M., Nezhad, S. S., Mortazavi, S. A., Golabchifar, A. A., & Khorshidian, N. (2021). Comparative effects of probiotic and paraprobiotic addition on microbiological, biochemical, and physical properties of yogurt. Food Research International, 140, 110030.

Patrignani, F., Siroli, L., Serrazanetti, D. I., Braschi, G., Betoret, E., Reinheimer, J. A., & Lanciotti, R. (2017). Microencapsulation of functional strains by high-pressure homogenization for potential use in fermented milk. Food research international, 97, 250-257.

Peng, K., Koubaa, M., Bals, O., & Vorobiev, E. (2020). Recent insights in the impact of emerging technologies on lactic acid bacteria: A review. Food Research International, 109544.

Peredo, A. G., Beristain, C. I., Pascual, L. A., Azuara, E., & Jimenez, M. (2016). The effect of prebiotics on the viability of encapsulated probiotic bacteria. LWT, 73, 191-196.

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. UFSM. https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1.

Pereira, R. N., Teixeira, J. A., Vicente, A. A., Cappato, L. P., da Silva Ferreira, M. V., da Silva Rocha, R., & da Cruz, A. G. (2018). Ohmic heating for the dairy industry: a potential technology to develop probiotic dairy foods in association with modifications of whey protein structure. Current Opinion in Food Science, 22, 95-101.

Rezazadeh, L., Alipour, B., Jafarabadi, M. A., Behrooz, M., & Gargari, B. P. (2021). Daily consumption effects of probiotic yogurt containing Lactobacillus acidophilus La5 and Bifidobacterium lactis Bb12 on oxidative stress in metabolic syndrome patients. Clinical Nutrition ESPEN, 41, 136-142.

Sarao, L. K., & Arora, M. (2017). Probiotics, prebiotics, and microencapsulation: A review. Critical reviews in food science and nutrition, 57(2), 344-371.

Silva, A. B., Scudini, H., Ramos, G. L. P., Pires, R. P., Guimarães, J. T., Balthazar, C. F., & Cruz, A. G. (2021). Ohmic heating processing of milk for probiotic fermented milk production: Survival kinetics of Listeria monocytogenes as contaminant post-fermentation, bioactive compounds retention, and sensory acceptance. International Journal of Food Microbiology, 348, 109204.

Speranza, B., Campaniello, D., Monacis, N., Bevilacqua, A., Sinigaglia, M., & Corbo, M. R. (2018). Functional cream cheese supplemented with Bifidobacterium animalis subsp. lactis DSM 10140 and Lactobacillus reuteri DSM 20016 and prebiotics. Food Microbiology, 72, 16-22.

Terpou, A., Bekatorou, A., Kanellaki, M., Koutinas, A. A., & Nigam, P. (2017). Enhanced probiotic viability and aromatic profile of yogurts produced using wheat bran (Triticum aestivum) as cell immobilization carrier. Process Biochemistry, 55, 1-10.

Terpou, A., Papadaki, A., Bosnea, L., Kanellaki, M., & Kopsahelis, N. (2019). Novel frozen yogurt production fortified with sea buckthorn berries and probiotics. LWT, 105, 242-249. (a)

Terpou, A., Papadaki, A., Lappa, I. K., Kachrimanidou, V., Bosnea, L. A., & Kopsahelis, N. (2019). Probiotics in food systems: Significance and emerging strategies towards improved viability and delivery of enhanced beneficial value. Nutrients, 11(7), 1591. (b)

Tiwari, S., Kavitake, D., Devi, P. B., & Halady, P. S. (2021). Bacterial exopolysaccharides for improvement of technological, functional, and rheological properties of yogurt. International Journal of Biological Macromolecules.

Turgut, T., & Cakmakci, S. (2018). Probiotic strawberry yogurts: Microbiological, chemical, and sensory properties. Probiotics and antimicrobial proteins, 10(1), 64-70.

Vlasova, A. N., Kandasamy, S., Chattha, K. S., Rajashekara, G., & Saif, L. J. (2016). Comparison of probiotic lactobacilli and bifidobacteria effects, immune responses, and rotavirus vaccines and infection in different host species. Veterinary immunology and immunopathology, 172, 72-84.

Wilkinson, M. G. (2018). Flow cytometry as a potential method of measuring bacterial viability in probiotic products: a review.

Xavier-Santos, D., Bedani, R., Perego, P., Converti, A., & Saad, S. M. I. (2019). L. acidophilus La-5, fructooligosaccharides, and inulin may improve the sensory acceptance and texture profile of a synbiotic diet mousse. LWT, 105, 329-335.

Yang, S., Yan, D., Zou, Y., Mu, D., Li, X., Shi, H., & Wu, J. (2021). Fermentation temperature affects yogurt quality: A metabolomics study. Food Bioscience, 101104.

Yerlikaya, O., Saygili, D., & Akpinar, A. (2021). An application of selected enterococci using Bifidobacterium animalis subsp. lactis BB-12 in set-style probiotic yogurt-like products. Food Bioscience, 41, 101096.

Yerlikaya, O., Saygili, D., Akpinar, A. (2021). An application of selected enterococci using Bifidobacterium animalis subsp. lactis BB-12 in set-style probiotic yogurt-like products. Food Bioscience, 41, 101-096.

Yilmaz-Ersan, L., Ozcan, T., & Akpinar-Bayizit, A. (2020). Assessment of socio-demographic factors, health status, and knowledge on probiotic dairy products. Food Science and Human Wellness, 9(3), 272-279.

Zamberlin, Š., & Samaržija, D. (2017). The effect of non-standard heat treatment of sheep’s milk on Physico-chemical properties, sensory characteristics, and the bacterial viability of classical and probiotic yogurt. Food Chemistry, 225, 62-68.

Zendeboodi, F., Khorshidian, N., Mortazavian, A. M., & da Cruz, A. G. (2020). Probiotic: conceptualization from a new approach. Current Opinion in Food Science, 32, 103-123.

Downloads

Published

26/09/2021

How to Cite

HUSSEIN, Z. E. H. .; SILVA, J. M. .; ALVES, E. S. .; CASTRO, M. C.; FERREIRA, C. S. R.; CHAVES, M. L. C.; BRUNI, A. R. da S.; SANTOS, O. O. . Technological advances in probiotic stability in yogurt: a review. Research, Society and Development, [S. l.], v. 10, n. 12, p. e449101220646, 2021. DOI: 10.33448/rsd-v10i12.20646. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/20646. Acesso em: 2 jan. 2025.

Issue

Section

Review Article