Cheese whey permeate valorization using sequential fermentations: case study performed in the Western Region of Paraná
DOI:
https://doi.org/10.33448/rsd-v10i13.21082Keywords:
Cheese whey; Cheese whey permeate; Acetic acid; Ethanol; Acetate overoxidation; Orleans.Abstract
Sooro Renner Nutrição S.A. company is found in the Western Region of Paraná/Brazil, which is highlighted nationally and in Latin America concerning the production of whey protein concentrate (WPC). During the production of WPC, performed in ultrafiltration membranes, the subproduct cheese whey permeate (CWP) is generated, which is rich in nutrients, such as lactose, minerals, and vitamins. This subproduct is reported as a potential culture medium to grow microorganisms. Thus, this research, performed in partnership with the Sooro company, aimed to develop biotechnological products employing sequential fermentations to fully use this subproduct bioconverting the ethanol obtained from CWP into vinegar employing the acetic bacterium Acetobacter aceti and different methods - Orleans, aerated, and stirred. The biotransformation into ethanol was performed by Kluyveromyces marxianus (alcoholic fermentation step) using a 2³ factorial experimental design to investigate the influence of lactose concentration, temperature, and pH. The maximum ethanol production was 47.18±0.05 g L-1, employing the conditions 88 g L-1 of lactose, 29 °C, and pH 4.5 in 45 h. Besides ethanol, probiotic cellular biomass, prebiotic galacto-oligosaccharides, and organic acids were also produced. In the oxidation stage, the Orleans method presented the best production: 42.30±0.08 g L-1 of acetic acid in 21 days. After this production, reductions of chemical oxygen demand and biochemical oxygen demand of the CWP were 60 and 65%, respectively. The results showed the great potential of CWP as a fermentation medium to obtain biotechnological products as a rentable and viable alternative to fully use CWP.
References
ABIQ. (2018). Associação Brasileira das Indústrias de Queijo. Queijos no Brasil. https://www.abiq.com.br/queijos_ler.asp?cod igo=1910&codigo_categoria=6&codigo_subcategoria=30
Andrade, R. L. P., & Martins, J. F. P. I. (2002). Influência da adição da fécula de batata doce (Ipomoea Batatas L.) sobre a viscosidade do permeado de soro de queijo. Ciência e Tecnologia de Alimentos, 22(3), 249–253.
Andrews, J. F. (1968). A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates. Biotechnology and Bioengineering, 10(6), 707–723. https://doi.org/10.1002/bit.260100602
Aquarone, E., & Zancanaro, O. J. (1983). Vinagres. In E. Aquarone, A. U. Lima, & W. Borzani (Eds.), Alimentos e bebidas produzidos por fermentação.
Barros Neto, B., Bruns, R. E., & Scarminio, I. S. (2010). Como fazer experimentos - Aplicações na ciência e na indústria.
Budak, N. H., Aykin, E., Seydim, A. C., Greene, A. K., & Guzel-Seydim, Z. B. (2014). Functional Properties of Vinegar. Journal of Food Science, 79(5). https://doi.org/10.1111/1750-3841.12434
Carvalho, F., Prazeres, A. R., & Rivas, J. (2013). Cheese whey wastewater: Characterization and treatment. Science of the Total Environment, 445–446, 385–396. https://doi.org/10.1016/j.scitotenv.2012.12.038
Chen, H., Chen, T., Giudici, P., & Chen, F. (2016). Vinegar Functions on Health: Constituents, Sources, and Formation Mechanisms. Comprehensive Reviews in Food Science and Food Safety, 15(6), 1124–1138. https://doi.org/10.1111/1541-4337.12228
Cho, Y. J., Kim, D. H., Jeong, D., Seo, K. H., Jeong, H. S., Lee, H. G., & Kim, H. (2018). Characterization of yeasts isolated from kefir as a probiotic and its synergic interaction with the wine byproduct grape seed flour/extract. LWT- Food Science and Technology, 90, 535–539. https://doi.org/10.1016/j.lwt.2018.01.010
Christensen, A. D., Kádár, Z., Oleskowicz-Popiel, P., & Thomsen, M. H. (2011). Production of bioethanol from organic whey using Kluyveromyces marxianus. Journal of Industrial Microbiology and Biotechnology, 38(2), 283–289. https://doi.org/10.1007/s10295-010-0771-0
Diniz, R. H. S., Rodrigues, M. Q. R. B., Fietto, L. G., Passos, F. M. L., & Silveira, W. B. (2013). Biocatalysis and Agricultural Biotechnology Optimizing and validating the production of ethanol from cheese whey permeate by Kluyveromyces marxianus UFV-3. Biocatalysis and Agricultural Biotechnology, 3(2), 1–7. https://doi.org/10.1016/j.bcab.2013.09.002
Diniz, R. H. S., Silveira, W. B., Fietto, L. G., & Passos, F. M. L. (2012). The high fermentative metabolism of Kluyveromyces marxianus UFV-3 relies on the increased expression of key lactose metabolic enzymes. Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology, 101(3), 541–550. https://doi.org/10.1007/s10482-011-9668-9
Dong, Z. Y., Liu, Y., Xu, M., Zhang, T. H., Ren, H., Liu, W., & Li, M. Y. (2020). Accelerated aging of grape pomace vinegar by using additives combined with physical methods. Journal of Food Process Engineering, 43(6). https://doi.org/10.1111/jfpe.13398
Fao. (2016). Brazil Dairy, Cheese Production by Year. Retrieved from https://usdabrazil.org.br/wp-content/uploads/2020/06/dairy-and-products-annual-4.pdf
Ferreyra, M., Schvab, M., Davies, C., Gerard, L., & Hours, R. (2012). Influencia del caudal de aire, temperatura y velocidad de agitación en el proceso discontinuo de acetificación para la obtención de vinagre de naranja (Citrus sinensis var. W. navel). Scientia Agropecuaria, 1, 61–65. Retrieved from http://www.redalyc.org/pdf/3576/357633701008.pdf
Ganju, S., & Gogate, P. R. (2017). A review on approaches for efficient recovery of whey proteins from dairy industry effluents. Journal of Food Engineering, 215, 84–96. https://doi.org/10.1016/j.jfoodeng.2017.07.021
Garcia, H. A. (2021). 20 anos de Sooro Renner: potencial humano, tecnologia e inovação movem a indústria. Retrieved September 16, 2021, from 20 anos de Sooro Renner: potencial humano, tecnologia e inovação movem a indústria website: https://sooro.com.br/noticias/20-anos-de-sooro-renner-potencial-humano-tecnologia-e-inovacao-movem-a-industria/
Ghanadzadeh, H., & Ghorbanpour, M. (2012). Optimization Of Ethanol Production From Cheese Whey Fermentation In A Batch-Airlift Bioreactor. Journal of Bioengineering & Biomedical Science, 02(02). https://doi.org/10.4172/2155-9538.1000111
Gomes, R. J., Borges, M. de F., Rosa, M. de F., Castro-Gómez, R. J. H., & Spinosa, W. A. (2018). Acetic acid bacteria in the food industry: Systematics, characteristics and applications. Food Technology and Biotechnology, 56(2), 139–151. https://doi.org/10.17113/ftb.56.02.18.5593
Guillamón, J. M., & Mas, A. (2011). Acetic Acid Bacteria. In R. G. Alfonso V. Carrascosa, Rosario Muñoz (Ed.), Molecular Wine Microbiology (pp. 227–255). https://doi.org/https://doi.org/10.1016/B978-0-12-375021-1.10009-8
Guizani, N., & Mothershaw, A. (2006). Fermentation: general principles. In T. & Francis (Ed.), Handbook of Food Science, Technology, and Engineering (pp. 61–68). London.
Gullo, M., Verzelloni, E., & Canonico, M. (2014). Aerobic submerged fermentation by acetic acid bacteria for vinegar production: Process and biotechnological aspects. Process Biochemistry, 49(10), 1571–1579. https://doi.org/10.1016/j.procbio.2014.07.003
Güneser, O., Karagül-Yüceer, Y., Wilkowska, A., & Kregiel, D. (2016). Volatile metabolites produced from agro-industrial wastes by Na-alginate entrapped Kluyveromyces marxianus. Industrial Microbiology Volatile, 47(4), 965–972. https://doi.org/10.1016/j.bjm.2016.07.018
Haddish, K. (2015). Production of Single Cell Protein from Fruit of Beles (Opuntia Ficus-Indica L.) Peels Using Saccharomyces cerevisiae. Journal of Microbiology & Experimentation, 2(7), 212–214. https://doi.org/10.15406/jmen.2015.02.00073
Ho, C. W., Lazim, A. M., Fazry, S., Zaki, U. K. H. H., & Lim, S. J. (2017). Varieties, production, composition and health benefits of vinegars: A review. In Food Chemistry. https://doi.org/10.1016/j.foodchem.2016.10.128
Illanes, A. (2016). Lactose: Production and Upgrading. In Lactose- Derived Prebiotics (pp. 1–33). Academic Press.
Jackson, R. S. (2008). Fermentation. In Wine science: principles and applications. (pp. 332–417). Academic Press.
Karim, A., Gerliani, N., & Aïder, M. (2020). Kluyveromyces marxianus: An emerging yeast cell factory for applications in food and biotechnology. International Journal of Food Microbiology, 333, 108818. https://doi.org/10.1016/j.ijfoodmicro.2020.108818
Key, B., Kohl, A.-K., Elflein, J., Puri-Mirza, A., Sapun, P., & Cherowbrier, J. (2021). Production of cheese in Brazil from 2010 to 2019. Statista Research Department website: https://www.statista.com/statistics/1004455/brazil-cheese-production-volume/
Khezri S., M.M., S., I., S., M., D., & P., D. (2016). Whey: characteristics, applications and health aspects. 3rd International Conference on Science and Engineering, 1–9. Retrieved from www.3icesconf.com
Krusong, W., & Tantratian, S. (2014). Acetification of rice wine by Acetobacter aceti using loofa sponge in a low-cost reciprocating shaker. Journal of Applied Microbiology, 117(5), 1348–1357. https://doi.org/10.1111/jam.12634
Krusong, W., Yaiyen, S., & Pornpukdeewatana, S. (2015). Impact of high initial concentrations of acetic acid and ethanol on acetification rate in an internal Venturi injector bioreactor. Journal of Applied Microbiology, 118(3), 629–640. https://doi.org/10.1111/jam.12715
Kucerova-Chlupacova, M., Halakova, D., Majekova, M., Treml, J., Stefek, M., & Soltesova, M. (2020). Chemico-Biological Interactions ( 4-Oxo-2-thioxothiazolidin-3-yl ) acetic acids as potent and selective aldose reductase inhibitors. Chemico-Biological Interactions, 332, 109286. https://doi.org/10.1016/j.cbi.2020.109286
Lagrange, V., E Dallas, P. (1997). Inovação de Produto com Concentrados de Proteína de Soro de Leite dos USA. Boletim Da Sociedade Brasileira de Ciência e Tecnologia de Alimentos, 31(1), 17–21.
Láinez, M., Ruiz, H. A., Arellano-Plaza, M., & Martínez-Hernández, S. (2019). Bioethanol production from enzymatic hydrolysates of Agave salmiana leaves comparing S. cerevisiae and K. marxianus. Renewable Energy, 138, 1127–1133. https://doi.org/10.1016/j.renene.2019.02.058
Lane, M. M., & Morrissey, J. P. (2010). Kluyveromyces marxianus : A yeast emerging from its sister's shadow. Fungal Biology Reviews, 24(1–2), 17–26. https://doi.org/10.1016/j.fbr.2010.01.001
Lazaro, C. Z., Vich, D. V., Hirasawa, J. S., & Varesche, M. B. A. (2012). Hydrogen production and consumption of organic acids by a phototrophic microbial consortium. International Journal of Hydrogen Energy, 37(16), 11691–11700. https://doi.org/10.1016/j.ijhydene.2012.05.088
Lustrato, G., Salimei, E., Alfano, G., Belli, C., Fantuz, F., Grazia, L., & Ranalli, G. (2013). Cheese whey recycling in traditional dairy food chain: effects of vinegar from whey in dairy cow nutrition. Acetic Acid Bacteria, 2(1s), 8. https://doi.org/10.4081/aab.2013.s1.e8
Lynch, K. M., Zannini, E., Wilkinson, S., Daenen, L., & Arendt, E. K. (2019). Physiology of Acetic Acid Bacteria and Their Role in Vinegar and Fermented Beverages. Comprehensive Reviews in Food Science and Food Safety, 18(3), 587–625. https://doi.org/10.1111/1541-4337.12440
Marx, M., & Kulozik, U. (2018). Thermal denaturation kinetics of whey proteins in reverse osmosis and nanofiltration sweet whey concentrates. International Dairy Journal, 85, 270–279. https://doi.org/10.1016/j.idairyj.2018.04.009
Marx, S., Brandling, J., & Gryp, P. Van der. (2012). Ethanol production from tropical sugar beet juice. African Journal of Biotechnology, 11(54), 11709–11720. https://doi.org/10.5897/ajb12.1171
Mesa, M. M., Caro, I., & Cantero, D. (1996). Viability reduction of Acetobacter aceti due to the absence of oxygen in submerged cultures. Biotechnology Progress, 12(5), 709–712. https://doi.org/10.1021/bp960032j
Mirzaei, M., Mirdamadi, S., Ehsani, M. R., & Aminlari, M. (2018). Production of antioxidant and ACE-inhibitory peptides from Kluyveromyces marxianus protein hydrolysates: Purification and molecular docking. Journal of Food and Drug Analysis, 26(2), 696–705.
Mullins, E. A., & Kappock, T. J. (2013). Functional analysis of the acetic acid resistance (aar) gene cluster in Acetobacter aceti strain 1023. Acetic Acid Bacteria, 2(1s), 3. https://doi.org/10.4081/aab.2013.s1.e3
Muraoka, H., Watabe, Y., Ogasawara, N., & Takahashi, H. (1983). Trigger of Damage by Oxygen Deficiency to the Acid Production System during Submerged Acetic Fermentation with Acetobacter aceti : Journal of Fermentation Technology, 61(1), 89–93.
Murari, C. S., Machado, W. R. C., Schuina, G. L., & Bianchi, V. L. Del. (2019). Optimization of bioethanol production from cheese whey using Kluyveromyces marxianus URM 7404. Biocatalysis and Agricultural Biotechnology, 20(April), 101182. https://doi.org/10.1016/j.bcab.2019.101182
Murari, C. S., Silva, D. C. M. N. da, Schuina, G. L., Mosinhahti, E. F., & Bianchi, V. L. del. (2018). Bioethanol Production from Dairy Industrial Coproducts Bioethanol Production from Dairy Industrial Coproducts. BioEnergy Research, 12, 112–122. https://doi.org/10.1007/s12155-018-9949-5
Nagodawithana, T. W., & Steinkraus, K. H. (1976). Influence of the Rate of Ethanol Production and Accumulation on the Viability of Saccharomyces cerevisiae in " Rapid Fermentation ". Appied and Environmental Microbiology, 31(2), 158–162.
Nakano, S., & Fukaya, M. (2008). Analysis of proteins responsive to acetic acid in Acetobacter: Molecular mechanisms conferring acetic acid resistance in acetic acid bacteria. International Journal of Food Microbiology, 125(1), 54–59. https://doi.org/10.1016/j.ijfoodmicro.2007.05.015
Nakano, S., Fukaya, M., & Horinouchi, S. (2006). Putative ABC transporter responsible for acetic acid resistance in Acetobacter aceti. Applied and Environmental Microbiology, 72(1), 497–505. https://doi.org/10.1128/AEM.72.1.497-505.2006
Nelson, D. L., & Cox, M. M. (2014). Princípios de bioquímica de Lehninger.
Padilla, B., Frau, F., Ruiz-matute, A. I., Montilla, A., Belloch, C., Manzanares, P., & Corzo, N. (2015). Production of lactulose oligosaccharides by isomerisation of transgalactosylated cheese whey permeate obtained by β -galactosidases from dairy Kluyveromyces. Journal of Dairy Research, 356–364. https://doi.org/10.1017/S0022029915000217
Pal, P., & Nayak, J. (2017). Acetic Acid Production and Purification: Critical Review Towards Process Intensification. Separation and Purification Reviews, 46(1), 44–61. https://doi.org/10.1080/15422119.2016.1185017
Parrondo, J., Herrero, M., García, L. A., Díaz, M., & Brew, J. I. (2003). A Note – Production of Vinegar from Whey. Journal of the Institute of Brewing, 109(4), 356–358. https://doi.org/DOI: 10.1002/j.2050-0416.2003.tb00610.x
Passos, F. R. dos, Maestre, K. L., Silva, B. F. da, Rodrigues, A. C., Triques, C. C., Garcia, H. A., Fiorese, M. L. (2021). Production of a synbiotic composed of galacto-oligosaccharides and Saccharomyces boulardii using enzymatic-fermentative method. Food Chemistry, 353. https://doi.org/10.1016/j.foodchem.2021.129486
Pazuch, C. M., Kalschne, D. L., Siepmann, F. B., Marx, I. M. G., de Oliveira, T. C. G., Spinosa, W. A., Colla, E. (2020). Optimization and characterization of vinegar produced from rice bran. Food Science and Technology, 40(3), 608–613. https://doi.org/10.1590/fst.13919
Raspor, P., & Goranovič, D. (2008). Biotechnological applications of acetic acid bacteria. Critical Reviews in Biotechnology, 28(2), 101–124. https://doi.org/10.1080/07388550802046749
Samuel, O., Lina, J., & Ifeanyi, O. (2016). Production of Vinegar from Oil-palm Wine Using Acetobacter aceti Isolated from Rotten Banana Fruits. Universal Journal of Biomedical Engineering, 4(1), 1–5. https://doi.org/10.13189/ujbe.2016.040101
Sievers, M., & Swings, J. (2015). Acetobacter . Bergey’s Manual of Systematics of Archaea and Bacteria, 1–7. https://doi.org/10.1002/9781118960608.gbm00876
Spinosa, W. A., Júnior, S., Galvan, D., Fiorio, J. L., Jorge, R., & Castro, H. (2015). Vinegar rice (Oryza sativa L.) produced by a submerged fermentation process from alcoholic fermented rice. Food Science and Technology, 35(1), 196–201.
Talabardon, M., Schwitzguébel, J. P., & Péringer, P. (2000). Anaerobic thermophilic fermentation for acetic acid production from milk permeate. Journal of Biotechnology, 76(1), 83–92. https://doi.org/10.1016/S0168-1656(99)00180-7
Tesfaye, W., Morales, M. L., García-Parrilla, M. C., & Troncoso, A. M. (2002). Wine vinegar: Technology, authenticity and quality evaluation. Trends in Food Science and Technology, 13(1), 12–21. https://doi.org/10.1016/S0924-2244(02)00023-7
Toit, W. Du, Lisjak, K., Marais, J., & Du Toit, M. (2006). The Effect of Micro-oxygenation on the Phenolic Composition, Quality and Aerobic Wine-Spoilage Microorganisms of Different SouthAfrican Red Wines. South African Journal of Enology and Viticulture, 27(1), 57–67.
Trigueros, D. E. G., Fiorese, M. L., Kroumov, A. D., Hinterholz, C. L., Nadai, B. L., & Assunc, G. M. (2016). Medium optimization and kinetics modeling for the fermentation of hydrolyzed cheese whey permeate as a substrate for Saccharomyces cerevisiae var. boulardii. Biochemical Engineering Journal, 110, 71–83. https://doi.org/10.1016/j.bej.2016.02.014
Wehr, H. M., & Frank, J. F. (2004). American Public Health Association.
Xie, Y., Zhang, H., Liu, H., Xiong, L., Gao, X., Jia, H., … Han, T. (2015). Hypocholesterolemic effects of Kluyveromyces marxianus M3 isolated from Tibetan mushrooms on diet-induced hypercholesterolemia in rat. Brazilian Journal of Microbiology, 46(2), 389–395. https://doi.org/10.1590/S1517-838246220131278
Yadav, J. S. S., Yan, S., Pilli, S., Kumar, L., Tyagi, R. D., & Surampalli, R. Y. (2015). Cheese whey: A potential resource to transform into bioprotein, functional/nutritional proteins and bioactive peptides. Biotechnology Advances, 33(6), 756–774. https://doi.org/10.1016/j.biotechadv.2015.07.002
Yu, L., Zhuang, X., Bai, L., Li, F., He, W., Li, G., & Huang, J. (2016). Acetic acid production from the hydrothermal transformation of organics in waste liquid crystal display panels. Journal of Cleaner Production, 113, 925–930. https://doi.org/10.1016/j.jclepro.2015.11.056
Zacarchenco, P. B., Dender, A. G. F., Spadoti, L. M., Galfina, D. A., Trento, F. K. H. s., & Silva, A. T. P. (2012). Permeado de soro de leite desproteinizado. Guia de Referência Do Setor Lácteo. Anuário Leite e Derivados.
Zoppellari, F., & Bardi, L. (2013). Production of bioethanol from effluents of the dairy industry by Kluyveromyces marxianus. New Biotechnology, 30(6), 607–613. https://doi.org/10.1016/j.nbt.2012.11.017
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Keiti Lopes Maestre; Fernanda Rengel dos Passos ; Carina Contini Triques ; Leila Denise Fiorentin-Ferrari ; Veronice Slusarski-Santana ; Helio Alves Garcia; Edson Antônio da Silva ; Mônica Lady Fiorese
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.