Agronomic variability between commercial and experimental carrot genotypes with emphasis on multivariate analysis
DOI:
https://doi.org/10.33448/rsd-v10i13.21145Keywords:
Daucus carota L.; Genetic breeding; Similarity; Multiple factor analysis.Abstract
Carrots are among the five most cultivated vegetables in Brazil, which is why the search for commercial cultivars is a great challenge in breeding programs, because, in addition to being productive, these tuberous roots must present characteristics of fundamental interest for the producer to achieve acceptance of the product in the consumer market. Therefore, the objective of this work was to evaluate the level of similarity between summer carrot genotypes, and to establish the relationships between the variables, through agronomic and morphological characters of the plant and tuberous roots, in order to diagnose possible groupings in relation to the analyzed variables, using the techniques of multivariate and univariate analysis. The trial was conducted in a randomized block design with three replications, evaluating 11 summer carrot genotypes, with seven commercial genotypes available on the market (SV1099DT, Nativa, EX 4098, AGR-123, AGR-125, Juliana and Brazlândia) and four experimental hybrids. Fifteen agronomic characteristics of plants and tuberous roots were evaluated. Given the results, the multiple factor analysis technique was able to establish the similarities between the genotypes studied, showing high similarity between commercial genotypes present in the market and experimental hybrids. Exploratory factor analysis established the correlations of the variables and was able to project a separation between commercial and experimental genotypes. The specificities presented by the experimental genotypes were explained in the Scott-Knott mean test.
References
Abdi, H., Williams, L., & Valentin, D. (2013). Multiple factor analysis: principal component analysis for multitable and multiblock data sets. WIREs Computational Statatistics, 5 (2), 149-179. 10.1002/wics.1246
Araújo, J. C., Telhado, S. F. P., Sakai, R. H., Ledo, C. A. S., & Melo, P. C. T. (2016). Univariate and multivariate procedures for agronomic evaluation of organically grown tomato cultivars. Horticultura Brasileira 34: 374-380, 2016. 10.1590/S0102-05362016003011
Buratto, J. S., Santos Neto, J., & Moda-Cirino, V. (2016). Desempenho agronômico e dissimilaridade genética entre acessos de amendoim por variáveis multicategóricas. Scientia Agraria Paranaensis, 15(3), 324-331. 10.18188/sap.v15i3.13125
Carvalho, A. D. F., & Silva, G. O. (2017). Genetic divergence among carrot genotypes through agronomic characteristics. Revista Agro@mbiente, 11 (2), 137-144. 10.18227/1982-8470ragro.v11i2.3642
Cecon, P. R., Silva, F. F. E., Ferreira, A., Ferrão, R. G., Carneiro, A. P. S., Detmann, E., Faria, P.N., & Morais, T. S. S. (2008). Análise de medidas repetidas na avaliação de clones de café 'Conilon'. Pesquisa Agropecuária Brasileira, 43 (1), 1171-1176. 10.1590/S0100-204X2008000900011
Cruz, C. D., Carvalho, S. P., & Vencovsky, R. (1994). Estudos sobre a divergência genética II. Eficiência da predição do comportamento de híbridos com base na divergência de progenitores. Revista Ceres, v. 41(1) 183-194. http://www.ceres.ufv.br/ojs/index.php/ceres/article/view/2070
Cruz, C. D., Regazzi, A. J., & Carneiro, P. C. S. (2012). Modelos biométricos aplicados ao melhoramento genético. Ed. da UFV, 514p.
Escofier, B., & Pagès, J. (2008). Analyses factorielles simples et multiples: objectifs, méthodes et interprétation. (4a ed.), Dunod, 318 p.
FAOSTAT - Food and Agriculture Data. Produtividade da Cenoura (2017). http://www.fao.Org/faostat/en/#data/QC
Ferreira, E. B., Cavalcanti, P. P., & Nogueira D. A. (2021). ExpDes: Pacote Experimental Designs. URL <https://cran.rstudio.com/web/packa ges/ExpDes/index.html>. R package version 1.2.1.
Grangeiro, L. C., Azevêdo, P. E., Nunes, G. H. S., Dantas, M. S. M., & Cruz, C. A. (2012). Desempenho e divergência genética de cenoura ‘Brasília’ em função da procedência das sementes. Horticultura Brasileira, 30 (1), 137-142. 10.1590/S0102-05362012000100023
Grigolo, S., Fioreze, A. C. C. L., Denardi, S. & Vacari, J. (2018). Implicações da análise univariada e multivariada na dissimilaridade de acessos de feijão comum. Revista de Ciências Agroveterinárias 17(3), 351-360. https://www.revistas.udesc.br/index.php/agroveterinaria/article/view/9324
Hiranvarachat, B., & Devahastin, S. (2014). Enhancement of microwave-assisted extraction via intermittent radiation: Extraction of carotenoids from carrot peels. Journal of Food Engineering, 126 (1), 17-26, 2014. 10.1016/j.jfoodeng.2013.10.024
Jelihovschi, E., Faria, J. C., & Allaman, I. B. (2014). Scott-Knott: A Package for Performing the Scott-Knott Clustering Algorithm in R. Trends in Computational and Applied Mathematics, 15 (1), 3-17. 10.5540/tema.2014.015.01.0003
Maksylewicz, A., & Baranski, R. (2013) Intra-population genetic diversity of cultivated carrot (Daucus carota L.) assessed by analysis of microsatellite markers. Acta Biochimica Polonica, 60 (1) 753-760. https://pubmed.ncbi.nlm.nih.gov/24432327/
Nick, C., & Borém, A. (2016). Cenoura: do plantio à colheita. Editora UFV. 179 p.
Oliveira, C. D., Braz, L. T. E., & Banzatto, D. A. (2005). Adaptabilidade e estabilidade fenotípica de genótipos de cenoura. Horticultura Brasileira, 23 (3) 743-748. 10.1590/S0102-05362005000300011
Ossani, P. C., & Cirillo, M. A. (2021). MVar: Multivariate Analysis. URL <https://cran.r-project.org/web/packages/MVar/index.html>. R package version 2.1.7.
Rencher, A. C., & Christensen, W. F. (2012). Methods of Multivariate Analysis. (3a ed.), J. Wiley, 758 p.
R Development Core Team. (2021) R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna: Vienna University of Economics and Business. http://www.R-project.org
Scott, A. J., & Knott, M. (1974). A Cluster Analysis Method for Grouping Means in the Analysis of Variance. Biometrics, 30 (3), 507-512. https://www.jstor.org/stable/2529204
Souza, D. C., Ossani, P. C., Vilela, L. V., Cirillo, M. Â., Silva, L. F. L. S., & Xavier, J. B. (2019). Variabilidade genética entre cultivares comerciais e híbridos experimentais de morangueiro com ênfase em análise de múltiplos fatores. Magistra, 30: 48-59. https://magistraonline.ufrb.edu.br/index.php/magistra/article/view/725
Zanettini, M. H. B., & Cavalli, S. S. Variabilidade genética em função do modo de reprodução. In: Freitas LB, Bered F, editors. Genética e evolução vegetal.: Editora UFRGS; 2003. p.177-187.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Douglas Correa de Souza; Sebastião Márcio de Azevedo; Paulo César Ossani; Luciano Peixoto de Faria; Wagner Adão Aparecido Marques; Gustavo Akira Narita
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.