Use of low-cost adsorbent derived from the brazilian cerrado biome to remove pollutants in effluent
DOI:
https://doi.org/10.33448/rsd-v10i13.21154Keywords:
Biomass; Biochar; Pequi; Pollutants.Abstract
The biochar of the Pequi peel represents a sustainable alternative in the process of treating effluents through adsorption system. This study investigates the adsorption capacity in a fixed bed column of the activated biochar from pequi peel (ABPP) to remove the components. The biochar was obtained by pyrolysis, which was activated with zinc Chloride - ZnCl₂. Through the Thomas model, it was found that the concentration of Paracetamol of 5 mg L-1 obtained 3.21 mg g-1 of drug adsorption, which was higher than the adsorption obtained with the concentrations of 10 mg L-1 (3.02 mg g-1) and 20 mg L1 (1.22 mg g-1). Methylene blue was tested with a concentration of 3 mg L-1, adsorbing 8.07 mg g-1. The data fit the Thomas model with an R² higher than 0.90. The capacity of ABPP to adsorb methylene blue and Paracetamol was satisfactory, with adsorbing significant.
References
American Society for Testing and Materials – ASTM International. ASTM D 3173-87 (2003). Standard method for determination of moisture content in biomass.
American Society for Testing and Materials – ASTM International. ASTM D 3174-04 (2004). Standard method for ash in the analysis sample of coal and coke.
American Society for Testing and Materials – ASTM International. ASTM D 3175-07 (2007). Standard method for volatile matter in the analysis sample of coal.
American Society for Testing and Materials – ASTM International. ASTM D 1762 – 84 (2013). Standard Test Method for Chemical Analysis of Wood.
American Society for Testing and Materials – ASTM International. ASTM D3176 – 15. Standard Practice for Ultimate Analysis of Coal and Coke.
Andrade, R. G. S. A., Andrade, K. R. B., Melo, F. D. S., Barbosa, J. I., Soletti, S. H. V., & Carvalho (2017) Obtenção de curvas de ruptura na adsorção do Azul de Metileno em carvão ativado do endocarpo do coco. Blucher Chemical Engineering Proceedings. doi:10.1016/chemeng-cobeqic2017-290.
Basílio, J. J. N., Rodrigues L. A., Silva, M. S. A., Colen F., & Oliveira, L. S. (2020) Pequi bark biochar as a substrate component for the production of Eucalyptus urophylla S. T. seedlings. Agricultural Sciences Notebook. doi:10.35699/2447-6218.2020.24836.
Bhuvaneshwari, H., Hettiarachchi, J. N., & Meegoda (2019) Crop residue burning in India: policy challenges and potential solutions. Int. J. Environ. Res. and Public Health. doi:10.3390/ijerph16050832.
Bisognin, R. P., Wolff, D. B., & Carissimi, E. ;(2018) Review of pharmaceuticals in the environment. Revista DAE. doi:10.4322/dae.2018.009.
Borba, L. L., Cuba, R. M. F., Terán, F. J. C., Castro, M. N., & Mendes, T. A. (2019) Use of Adsorbent Biochar from Pequi (Caryocar Brasiliense) Husks for the Removal of Commercial Formulation of Glyphosate from Aqueous Media. Brazilian Archives of Biology and Technology. doi: 10.1590/1678-4324-2019180450.
Borges, M. S., Barbosa, R. S., Rambo, M. K., Rambo, M. C., & Scapin, E. (2020) Evaluation of residual biomass produced in Cerrado Tocantinense as potential raw biomass for biorefinery. Biomass Conversion and Biorefinery. doi:10.1007/s13399-020-00892.
Brito, M. R., Junior, C. C. S., Rambo, M. K. D., Scapin, E., Pedroza, M. M., Rambo, M. C. D., & Barbosa, L. N. (2020) Utilization of pequi Residual Biomass from the Brazilian cerrado for obtaining raw and activated biochars and bio-oil. International. Journal of Advanced Engineering Research and Science 7:1-9. doi:7. 251-259. 10.22161/ijaers.79.29.
Cao, H., Wu, X., Syed-Hassan, S. S. A., Zhang, S., Mood, S. H., Milan, Y. J., & Garcia-Perez, M. (2020) Characteristics and mechanisms of phosphorous adsorption by rape straw-derived biochar functionalized with calcium from eggshell. Bioresource Technology. doi:10.1016/j.biortech.2020.124063.
CERNE. doi:10.1590/01047760201723042373.
Costa, P. D., Furmanski, L. M., & Dominguini, L. (2015) Produção, caracterização e aplicação de carvão ativado de casca de nozes para adsorção de azul de metileno. Revista virtual de química 7:1272-1285. doi:10.5935/1984-6835.20150070.
Cvitanovic, C., & Hobday, A. (2018) Building optimism at the environmental science-policy-practice interface through the study of bright spots. Nature communications. doi:10.1038/s41467-018-05977-w.
Dong, T. N., Hai, N. T., Ruey-Shin, J. et al (2020) Adsorption process and mechanism of acetaminophen onto commercial activated carbon. Journal of Environmental Chemical Engineering 8:104-408. doi: 10.1016/j.jece.2020.104408.
Ferchichi, M., & Dhaouadi, H. (2016) Sorption of paracetamol onto biomaterials. Water Sci Technol. doi: 10.2166/wst.2016.218.
Ferraro, G., Pecori, G., Rosi, L. et al. (2021) Biochar da pirólise em escala de laboratório: influência da matéria-prima e da temperatura operacional. Biomass Conv. Bioref. doi:10.1007/s13399-021-01303-5.
Ferreira, R. C. et al. (2018) Use of fresh palm oil activated charcoal and acid-functionalized in the adsorption of paracetamol. Matter. doi: 10.1590/s1517-707620170001.0304.
Franco, M. A. E., Carvalho CB, Bonetto MM, Pelegrini SR, & Féris L A (2018) Diclofenac removal from water by adsorption using activated carbon in batch mode and fixed-bed column: isotherms, thermodynamic study and breakthrough curves modeling. Journal of Cleaner Production, 181:145-154. doi:10.1016/j.jclepro.2018.01.138.
Fuentes, A. B., Canevesi, R. L. S., Gadonneix, P., Mathieu, S., Celzard, A., & Fierro, V. (2020) Paracetamol removal by Kon-Tiki kiln-derived biochar and activated carbons. Industrial Crops and Products. doi:10.1016/j.indcrop.2020.112740.
Gabelman, A. (2017) Adsorption basics: part 1. Nova York.
García-Mateos, F. J., Ruiz-Rosas, R., Marqués, M. D., Cotoruelo, L. M., Rodrígues-Mirasol, J., & Cordero, T. (2015) Removal of paracetamol on biomass-derived activated carbon: Modeling the fixed bed breakthrough curves using batch adsorption experiments. Chemical Engineering Journal, 279:18-30. doi:10.1016/j.cej.2015.04.144.
Gascó, G., Paz-Ferreiro, J., Álvarez, M. L., & Méndez, A. S. (2018) Biochars e hydrochars preparados por pirólise e carbonização hidrotérmica de esterco de porco. Waste Manag. doi:10.1016/J.WASMAN.2018.08.015.
Gupta, J., & Nain, A. K. (2019) Physicochemical study of solute-solute and solute-solvent interactions of homologous series of α-amino acids in aqueous-isoniazid solutions at temperatures from 293.15 to 318.15 K. J Mol Liq. Journal of Molecular Liquids, 278:262–278. doi:10.1016/j.molliq.2019.01.036.
Gurke, R., Rößler, M., Marx, C., Diamond, S., Schubert, S., Oertel, S., & Fauler, J. (2015) Occurrence and removal of frequently prescribed pharmaceuticals and corresponding metabolites in wastewater of a sewage treatment plant. Science of the Total Environment. doi:10.1016/j.scitotenv.2015.06.067.
Gwenzi, W., Chaukura, N., Wenga, T., & Mtisi, M. (2020) Biochars as media for air pollution control systems: Contaminant removal, applications and future research directions environmental science. doi: 10.13140/RG.2.2.33647.87206.
Haro, N. K., Dávila, I. V. J., Nunes, K. G. P., Franco, M. A. E., Marcilio, N. R., & Féris, L. A. (2021) Kinetic, equilibrium and thermodynamic studies of the adsorption of paracetamol in activated carbon in batch model and fixed-bed column. Applied Water Science. doi:10.1007/s13201-020-01346-5
Jorge, I. R., Tavares, F. P., & Santos, K. G. (2021) Reuse of sugarcane bagasse as a bioadsorber in the removal of methylene blue in a fixed bed. Brazilian Journal of Science, Technology and Innovation 5:1-15. doi:10.18554/rbcti.v5i1.3346.
Lawal, A. A., Hassan, M. A., Farid, M. A. A., Yasim-Anuar, T. A. T., Samsudin, M. H., Yusoff, M. Z. M., & Shirai, Y. (2021) Adsorption mechanism and effectiveness of phenol and tannic acid removal by biochar produced from oil palm frond using steam pyrolysis. Environmental Pollution. doi:10.1016/j.envpol.2020.116197.
Lawal, A. A., Hassan, M. A., Farid, M. A. A., Yasim-Anuar, T. A. T., Samsudin, M. H., Yusoff, M. Z. M., & Shirai, Y. (2021) Adsorption mechanism and efficacy of the removal of phenol and tannic acid by biochar produced from palm fronds using steam pyrolysis. Environment Pollution. doi:10.1016/j.envpol.2020.116197.
Lee, B. X., Kjaerulf, F., Turner, S., Cohen, L., Donnelly, P. D., Muggah, R., Davis, R., Realini, A., Kieselbach, B., MacGregor, L. S., Waller, I., Gordon, R., Moloney-Kitts, M., Lee, G., & Gilligan, J. (2016) Transforming Our World: Implementing the 2030 Agenda Through Sustainable Development Goal Indicators. J Public Health Policy. doi:10.1057/s41271-016-0002-7.
Lima, D. R., Hosseini-Bandegharaei, A., Thue, P. S., Lima, E. C., Albuquerque, Y. R., Reis, G. ,S., & Tran, H. N., (2019). Efficient acetaminophen removal from water and hospital effluents treatment by activated carbons derived from Brazil nutshells. Colloids and Surfaces A: Physicochemical and Engineering Aspects 583:123-966. doi: 10.1016/j.colsurfa.2019.123966.
Lima, J. P., Alvarenga, G., Rosa, G., & Lopes, T. (2018) Obtaining charcoal from timbaúva bark (Enterolobium contortisilquum) and its application in the methylene blue adsorption process. Blucher Chemical Engineering Proceedings. doi:0.5151/chemeng-cobeqic2017-052.
Marcelino, G. R., Carvalho, K. Q., Lima, M. X., Passig, F. H., Belini, A. D. Bernardelli, J. K. B., & Nagalli, A. (2020) Construction waste as substrate in vertical subsuperficial constructed wetlands treating organic matter, ibuprofenhene, acetaminophen and ethinylestradiol from low-strength synthetic wastewater. Science of The Total Environment. doi:10.1016/j.scitotenv.2020.138771.
Martins, A. F., Villetti, M. A., Mortari, S. R., Pedroso, G. B., Saldanha, L. F., & Rambo, M. K. (2020) Detoxification of fermentable broth with activated biocarbon resulting from pyrolysis of agro‐forestry residues. Water Environment Research. doi:10.1002/wer.1505.
Miranda, S. M. R., Veras, C. A. G., & Ghesti, G. F. (2020). Charcoal production from waste pequi seeds for heat and power generation. Waste Management. doi:10.1016/j.wasman.2019.12.025
Moino, B. P., Costa, C. S. D., Silva, M. G. C., & Vieira, M. G. A., (2017) Removal of nickel ions on residue of alginate extraction from Sargassum f ilipendula seaweed in packed bed. Journal of Water Process Engineering, 95:2120-2128. doi:10.1002/cjce.22859.
Moura, N. F., Chaves, L. J., & Naves, R. V. (2013) Characterization of pequi fruits (Caryocar brasiliense Camb.) from Brazilian cerrado. Rev. Árvore. doi:10.1590/S0100-67622013000500013 .
Nascimento, R. F. D., Lima, A. C. A. D. et al (2020) Adsorption: theoretical aspects and environmental applications. Fortaleza, Brasil.
Nourmoradi, H., Moghadam, K. F., Jafari, A., & Kamarehie, B. (2018) Removal of acetaminophen and ibuprofen from aqueous solutions by activated carbon derived from Quercus Brantii (Oak) acorn as a low-cost biosorbent. Journal of Environmental Chemical Engineering, 6:6807-6815. doi:10.1016/j.jece.2018.10.047.
Oliveira, F. F., Moura, K. O., Costa, L. S., Vidal, C. B., Loiola, A. R., & Nascimento, R. F. (2020) Reactive Adsorption of Parabens on Synthesized Micro and Mesoporous Silica from Coal Fly Ash: pH Effect on the Modification Process. ACS Omega. doi:10.1021/acsomega.9b03537.
Olu-Owolabi, B. I., Diagboya, P. N., Mtunzi, F. M., & Düring, R. A. (2021) Utilizing eco-friendly kaolinite-biochar composite adsorbent for removal of ivermectin in aqueous media. Journal of Environmental Management, 279:111--619. doi:10.1016/j.jenvman.2020.111619.
Ortiz, F. J. G., Rodríguez, M. B., & Yang, R. T. (2019) Modeling of fixed-bed columns for gas physical adsorption. Chemical Engineering Journal, 378:121-985. doi:10.1016/j.cej.2019.121985.
Patra, B. R., Mukherjee, A., Nanda, S. et al (2021) Biochar production, activation and adsorptive applications: a review. Environmental Chemistry Letters. doi:0.1007/s10311-020-01165-9.
Pedroza, M. M., Sousa, J. F., Vieira, G. E. G., & Bezerra, M. B. D. (2014) Characterization of the products from the pyrolysis of sewage sludge in 1 kg/h rotating cylinder reactor. Journal of Analytical and Applied Pyrolysis, 105:108-115. doi:10.1016/j.jaap.2013.10.009.
Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica.
Pin, C. F., Carvalho, P. E. B., Mesquita, V. R., Lima, D. R., Morais, M. M., Almeida, A. R. F., & Rodrigues, L. M. (2021) Use of Butiá Bagasse in the Treatment of Effluents for the Removal of Dye. Brazilian Journal of Animal and Environmental Research, 4:1-15. doi: 10.34188/bjaerv4n1-066
Pozo, P. C., Rego, F., Yang, Y., Puy, N., Bartrolí, J., Fàbregas, E., & Bridgwater, A. V. (2021) Converting coffee silverskin to value-added products by a slow pyrolysis-based biorefinery process. Fuel Processing Technology. doi:10.1016/j.fuproc.2020.106708.
Resplandes, S.P.R. et al (2019) Removal of blue dye from metinel in aqueous solution using pineapple peel and crown. https://propi.ifto.edu.br/ocs/index.php/jice/10jice/paper/viewFile/9792/4396. Accessed April 26, 2021.
Ribas, P. P., Santos, E. O., Costa, C. C., & Gonzáles, P. L. S. (2021) Estudos sobre remoção de micropoluentes emergentes em efluentes no Brasil: uma revisão sistemática. Revista Brasileira de Meio Ambiente 9:1-11.
Rodrigues, C. C., Lima, E. L., Nóbrega, S. W., & Santos, W. L. (2019) Removal of caffeine present in aqueous solutions through adsorption on a fixed bed column. In: Engineering Science and technology, 5ª Ed. Brasil, pp 388-416
Santos, K. G., Silva, A. L., Toigo, S., Lima, L. J., Oliveira, J., Minaré, M. M., Martins, P. R. G., Dantas, S. C., & Silvério, B. C. (2021) Online blended approach (PBL) applied to learning separation process in chemical engineering. Research, Society and Development.doi:10.33448 / rsd-v10i1.11408.
Schmal, M., (2014). Chemical reaction engineering: essentials, exercises and examples. New York.
Sellaoui, E. C. L., Lima, G. L., & Dotto, A. B. L. (2017) Adsorption of amoxicillin and paracetamol on modified activated carbons: equilibrium and positional entropy studies. J. Mol. Liq. doi:10.1016/j.molliq.2017.03.111.
Silva, J. G., Junior, E. J. A., Roeder, J. S., Oliveira, K. B., & Ferreira, M. P. (2017) Validação de Método Analítico para a Quantificação de Paracetamol em Solução Oral por Espectrofotometria no UV. Revista Virtual de Química, 9:1747-1759 doi:10.21577/1984-6835.20170101.
Thomas, H. C. (1944) Heterogeneous Ion Exchange in a Flowing System. Journal of the American Chemical Society.
Veiga, T. D. L. A., et al (2017) Different plant biomass characterizations for biochar production.
Villaescusa, I. et al. (2011) Mechanism of paracetamol removal by vegetable wastes: The contribution of Π-Π interactions, hydrogen bonding and hydrophobic effect. Desalination. doi:10.1016/j.desal.2010.11.037.
Yanyan, L. et al (2018). Acetaminophen removal from synthetic wastewater in a fixed bed column adsorption using low-cost coconut shell residues pre-treated with NaOH, HNO3, ozone and / or chitosan. Journal of Environmental Management, 226:365-376. doi:10.1016/j.jenvman.2018.08.032.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Mateus Rodrigues Brito; Matheus Gomes Arruda; Marcelo Mendes Pedroza; Helida Monique Cordasso Fagnani; Angélica Jaconi; Magale Karine Diel Rambo
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.