Exergy analysis of an anaerobic digestion plant fed with dairy cattle waste





Exergy; Dairy cattle manure; Biogas production; Thermodynamic efficiency; Chemical composition.; Exergy; Dairy cattle manure; Biogas production; Thermodynamic efficiency; Chemical composition.


In order to integrate different processes for the reuse of agricultural waste, the production of biogas and biofertilizer, produced by anaerobic digestion, are essential for the sustainable development and diversification of the Brazilian energy matrix. As the analysis of the thermodynamic performance of these systems is scarce in the literature, this work aimed to associate the physicochemical parameters of dairy cattle residues with the value of their respective chemical exergy. And thus, evaluate the efficiency of the biodigester based on real operational data from Starmilk, located in the municipality of Céu Azul in the west of the State of Paraná, Brazil. The results show that the exergy content of fresh manure was 16.03 MJ/kg, 15.35 MJ/kg for the biofertilizer and 29.55 MJ/m³ (CNTP) of biogas exergy. Based on the analyzes carried out, it is inferred that the analyzed biodigester has an overall exergy efficiency of 72.82%, being able to recover 27.29% of the exergy of cattle manure in the form of biogas.

Author Biography

Victor Vaz, Universidade Estadual do Oeste do Paraná

Graduated in Physics from the Universidade Federal de Goiás, Regional Catalão (UFG/RC) and graduated in Mathematics by the Kumon teaching method, also in Catalão Goiás. He has experience in research, in the field of teaching physics, with an emphasis on playful and active methodologies, as a scholarship holder for teaching initiation by the Programa Institucional de Bolsas de Iniciação à Docência (Pibid) and by the Residência Pedagógica (RP), both by Capes. Master's Degree in Energy Engineering in Agriculture at the Universidade Estadual do Oeste do Paraná (Unioeste) in the biofuels research line, studying the applications of thermoeconomics in evaluating the feasibility of projects.


Barati, M. R., Aghbashlo, M., Ghanavati, H., Tabatabaei, M., Sharifi, M., Javadirad, G., Dadak, A., & Mojarab Soufiyan, M. (2017). Comprehensive exergy analysis of a gas engine-equipped anaerobic digestion plant producing electricity and biofertilizer from organic fraction of municipal solid waste. Energy Conversion and Management, 151, 753–763. https://doi.org/10.1016/j.enconman.2017.09.017.

Barrera, E. L., Rosa, E., Spanjers, H., Romero, O., de Meester, S., & Dewulf, J. (2016). A comparative assessment of anaerobic digestion power plants as alternative to lagoons for vinasse treatment: life cycle assessment and exergy analysis. Journal of Cleaner Production, 113, 459–471. https://doi.org/10.1016/j.jclepro.2015.11.095.

Campos, A. T. de; Campos, A. T. Campos, D. S.; PIRES, M. de F. A. (2003). Tratamento e reciclagem de águas residuárias em sistema intensivo de produção de leite. Circular Técnica n. 75. Juiz de Fora: Embrapa Gado de Leite. http://ainfo.cnptia.embrapa.br/digital/bitstream/item/65245/1/CT-75-Tratamento-e-reciclagem-de-aguas.pdf.

Chen, L., Mehta, C., Ishimi, T., Fan, L., & Chen, Y. (1985). Thermodynamic analysis of anaerobic digestion of cattle manure. Agricultural Wastes, 14(2), 79–96. https://doi.org/10.1016/s0141-4607(85)80021-4.

Choi, H. L., Sudiarto, S. I., & Renggaman, A. (2014). Prediction of livestock manure and mixture higher heating value based on fundamental analysis. Fuel, 116, 772–780. https://doi.org/10.1016/j.fuel.2013.08.064.

CIBIOGÁS, Centro Internacional de Energias Renováveis. (2016). Análise físico-química dos efluentes da Fazenda Iguaçu StarMilk. Fundação Parque Tecnológico de Itaipu.

CIBIOGÁS, Centro Internacional de Energias Renováveis. (2017). Análise físico-química dos efluentes da Fazenda Iguaçu StarMilk. Fundação Parque Tecnológico de Itaipu.

CIBIOGÁS, Centro Internacional de Energias Renováveis. (2018). Análise físico-química dos efluentes da Fazenda Iguaçu StarMilk. Fundação Parque Tecnológico de Itaipu.

CONAB-Companhia Nacional de Abastecimento. (2020). Análise mensal brasileiras. Leite e Derivados, Brasília.

Deublein D., Steinhauser A. (2011). Biogas from Waste and Renewable Resources: an Introduction. John Wiley & Sons.

Estrela, C. (2018). Metodologia Científica: Ciência, Ensino, Pesquisa. Editora Artes Médicas.

Font-Palma, C. (2019). Methods for the Treatment of Cattle Manure—A Review. C, 5(2), 27. https://doi.org/10.3390/c5020027.

Itoh, T., Iwabuchi, K., Maemoku, N., Sasaki, I., & Taniguro, K. (2019). A new torrefaction system employing spontaneous self-heating of livestock manure under elevated pressure. Waste Management, 85, 66–72. https://doi.org/10.1016/j.wasman.2018.12.018.

Khosravi, S., Panjeshahi, M. H., & Ataei, A. (2013). Application of exergy analysis for quantification and optimisation of the environmental performance in wastewater treatment plants. International Journal of Exergy, 12(1), 119. https://doi.org/10.1504/ijex.2013.052552.

Kobayashi, N., Noel, E.A., Barnes, A., Watson, A., Rosenberg, J.N., Erickson, G., Oyler, G.A.. (2013). Characterization of three Chlorella sorokiniana strains in anaerobic digested effluent from cattle manure. Bioresour. Technol. 150( 3). 77–386.

Kotas T.J. (2013). The Exergy Method of Thermal Plant Analysis, Elsevier.

Kunz, A., Oliveira, P. A. V. (2006). Aproveitamento de dejetos de animais para geração de biogás. Revista de Política Agrícola 15 (3) 28-35.

Kunz, A, Steinmetz, R.L.R, Amaral, A.C. (2019). Fundamentos da digestão anaeróbia, purificação do biogás, uso e tratamento do digestato. Embrapa Suínos e Aves. Concordia SC. (pp.209). http://ainfo.cnptia.embrapa.br/digital/bitstream/item/197183/1/Livro-Biogas.pdf.

Lorimor, J.C., Powers, W. J., Sutton, Al. (2004). Manure Characteristics. MidWest Plan Service, Iowa State University, 24.

Lozano, M., & Valero, A. (1993). Theory of the exergetic cost. Energy, 18(9), 939–960. https://doi.org/10.1016/0360-5442(93)90006-y.

Manitoba. (2015). Properties of Manure, Final Report for the Manitoba Livestock Manure. Management Initiative.

Nakashima, R., & de Oliveira Junior, S. (2020). Comparative exergy assessment of vinasse disposal alternatives: Concentration, anaerobic digestion and fertirrigation. Renewable Energy, 147, 1969–1978. https://doi.org/10.1016/j.renene.2019.09.124.

Nitsche, P. R., Caramori, P. H., Ricce, W.S., Pinto, L. F. D. (2019). Atlas Climático do Estado do Paraná, Londrina, PR: IAPAR.

Palacios-Bereche, R., Mosqueira-Salazar, K. J., Modesto, M., Ensinas, A. V., Nebra, S. A., Serra, L. M., & Lozano, M. A. (2013). Exergetic analysis of the integrated first- and second-generation ethanol production from sugarcane. Energy, 62, 46–61. https://doi.org/10.1016/j.energy.2013.05.010.

Peduzzi, E., Boissonnet, G., & Maréchal, F. (2016). Biomass modelling: Estimating thermodynamic properties from the elemental composition. Fuel, 181, 207–217. https://doi.org/10.1016/j.fuel.2016.04.111.

Peixoto, G., Saavedra, N. K., Varesche, M. B. A., & Zaiat, M. (2011). Hydrogen production from soft-drink wastewater in an upflow anaerobic packed-bed reactor. International Journal of Hydrogen Energy, 36(15), 8953–8966. https://doi.org/10.1016/j.ijhydene.2011.05.014.

Souza Rita de Cássia Pereira de, Lima Lisandra Ferreira de; Vieirira Admilson Lopes. (2018). Análise exergética da vinhaça para produção de biogás, 2018. Departamento Acadêmico de Engenharia Ambiental. Universidade Tecnológica Federal do Paraná, Londrina.

Szargut J., Egzergia. (2007) Exergy method: technical and ecological application. Publishing House of the Silesian University of Technology. Gliwice, Polond.

Szargut, J, Morris, D R, & Steward, F R. (1988). Exergy analysis of thermal, chemical, and metallurgical processes. Hemisphere Publishing, New York, NY.

Tai, S., Matsushige, K., & Goda, T. (1986). Chemical exergy of organic matter in wastewater. International Journal of Environmental Studies, 27(3–4), 301–315. https://doi.org/10.1080/00207238608710299.

Tambone, F., Genevini, P., D’Imporzano, G., & Adani, F. (2009). Assessing amendment properties of digestate by studying the organic matter composition and the degree of biological stability during the anaerobic digestion of the organic fraction of MSW. Bioresource Technology, 100(12), 3140–3142. https://doi.org/10.1016/j.biortech.2009.02.012.

Vandevivere, P.; De Baere, L.; Verstraete, W. (2002). Types of Anaerobic Digester for Solid Wastes. In: Mata-Alvarez, J. (2002). Biomethanization of the Organic Fraction of Municipal Solid. Wastes. Water Intelligence Online, Publishing J. Londres, 4(0) 111-137.

Wang, L., Shahbazi, A., & Hanna, M. A. (2011). Characterization of corn stover, distiller grains and cattle manure for thermochemical conversion. Biomass and Bioenergy, 35(1), 171–178. https://doi.org/10.1016/j.biombioe.2010.08.018.

Xydis, G., Nanaki, E., & Koroneos, C. (2013). Exergy analysis of biogas production from a municipal solid waste landfill. Sustainable Energy Technologies and Assessments, 4, 20–28. https://doi.org/10.1016/j.seta.2013.08.003.



How to Cite

VAZ, V.; BISSANI, F. M. .; SILVA, E. V. C. da .; SOUZA, S. N. M. de .; BISSANI, B.; SOUZA, J. de . Exergy analysis of an anaerobic digestion plant fed with dairy cattle waste . Research, Society and Development, [S. l.], v. 10, n. 13, p. e276101321170, 2021. DOI: 10.33448/rsd-v10i13.21170. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/21170. Acesso em: 3 dec. 2021.