Viscosity modeling in polyvinylpyrrolidone/chitosan blend for adhesive membrane processing
DOI:
https://doi.org/10.33448/rsd-v10i13.21348Keywords:
Chitosan; Polyvinylpyrrolidone; Viscosity; Optimization; Mixtures.Abstract
Polyvinylpyrrolidone and chitosan biopolymers are biomaterials used in wound treatment, due to their biological, physicochemical, and other properties, in addition to their processability. Controlling the viscosity of polymers is of fundamental importance for processing and consequently for the properties of membranes, such as adhesiveness, crucial for medical applications in wounds. In this sense, the research proposal was to simulate and evaluate the viscosity of polymeric mixtures of medium molar mass (QM) chitosan and polyvinylpyrrolidone (PVP) in different concentrations and proportions for the synthesis of adhesive membranes. To this end, the viscosity of pure polymers was evaluated in the literature, a linear model for the viscosity of the mixtures was simulated and, subsequently, the response surface methodology (MSR) was applied using the central composite model, for three QM/PVP ratios at different concentrations of the solutions. The viscosity of QM and PVP polymers present an exponential growth trend line, based on literature data, having a satisfactory regression coefficient, and the linear simulation model for viscosity of the mixtures, proved to be satisfactory, considering a variation of 5%. The surface response and contour graphs make evident the effect of solution concentration and polymer mix ratio, and in which mixing situations it is possible to achieve higher and lower viscosity levels. The information obtained in the research is extremely useful, aiding in the development of polymeric mixtures, in order to seek the best conditions, reduce the time of experiments focusing on points of interest.
References
Agência Brasileira de Desenvolvimento Industrial. (2011). Manual de Registro e Cadastramento de Materiais de Uso em Saúde (ABDI).
Araújo, Â. M., Letícia, I., Palmeira, T., & Maria, A. (2017). Utilização de nanopartículas no tratamento de feridas : revisão sistemática. 1–10.
Ashland. (2020). PVP Polyvinylpyrrolidone - Polymers Intermediates, solvents, monomers, polymers and specialty. Ashland Brochure. https://www.brenntag.com/media/documents/bsi/product_data_sheets/material_science/ashland_polymers/pvp_polymers_brochure.pdf
Augusto, F., & Leite, S. (2021). Curativos de prata no tratamento de feridas exsudativas - uma revisão sistemática. Revista Feridas, 09(46), 1682–1689.
Bernardo, M., Paschoalin, R., Santos, D., Bilatto, S., Farinas, C., Correa, D., Oliveira, O., & Mattoso, L. (2021). Processamento e Aplicação de Biomateriais Poliméricos: Avanços Recentes e Perspectivas. Química Nova, January. 10.21577/0100-4042.20170781
Bharti, S. (2018). Adhesives and Adhesion Technologies: A Critical Review. American Journal of Polymer Science and Technology, 4(1), 36. 10.11648/j.ajpst.20180401.13
Brito, G. F., Agrawal, P., Araújo, E. M., & Mélo, T. J. A. (2011). Biopolímeros , Polímeros Biodegradáveis e Polímeros Verdes. Revista Eletrônica de Materiais e Processos, 2, 127–139. 1809‐8797
Callister Jr, W. D., & Rethwisch, D. G. (2020). Fundamentals of materials science and engineering: an integrated approach. John Wiley & Sons.
Dallan, P. R. M. (2005). Síntese e caracterizaçao de membranas de quitosana para aplicaçao na regeneração da pele. Universidade Estadual de Campinas.
Damian, C., Beirão, L. H., Francisco, A. De, Santo, M. L. P. E., & Teixeira, E. (2005). Quitosana : Um Amino Polissacarídio Com Características Funcionais. Alim. Nutr., 16(2), 195–205.
Franco, P., & De Marco, I. (2020). The use of poly(N-vinyl pyrrolidone) in the delivery of drugs: A review. Polymers, 12(5), 18–21. 10.3390/POLYM12051114
Higashi, S., Hirai, T., Matsubara, M., Yoshida, H., & Beniya, A. (2020). Dynamic viscosity recovery of electrospinning solution for stabilizing elongated ultrafine polymer nanofiber by TEMPO-CNF. Scientific Reports, 10(1), 1–8. 10.1038/s41598-020-69136-2
Hu, X., Du, Y., Tang, Y., Wang, Q., Feng, T., Yang, J., & Kennedy, J. F. (2007). Solubility and property of chitin in NaOH/urea aqueous solution. Carbohydrate Polymers, 70(4), 451–458. 10.1016/j.carbpol.2007.05.002
Kurakula, M., & Rao, G. S. N. K. (2020). Pharmaceutical assessment of polyvinylpyrrolidone (PVP): As excipient from conventional to controlled delivery systems with a spotlight on COVID-19 inhibition. Journal of Drug Delivery Science and Technology, 60(September), 102046. 10.1016/j.jddst.2020.102046
Mishra, R., Varshney, R., Das, N., Sircar, D., & Roy, P. (2019). Synthesis and characterization of gelatin-PVP polymer composite scaffold for potential application in bone tissue engineering. European Polymer Journal, 119(July), 155–168. 10.1016/j.eurpolymj.2019.07.007
Muxika, A., Etxabide, A., Uranga, J., Guerrero, P., & de la Caba, K. (2017). Chitosan as a bioactive polymer: Processing, properties and applications. International Journal of Biological Macromolecules, 105, 1358–1368. 10.1016/j.ijbiomac.2017.07.087
Oréfice, R. L., Pereira, M. de M., & Mansur, H. S. (2006). Biomateriais: fundamentos e aplicações. In Biomateriais: fundamentos e aplicações (p. 538).
Pascual-Gil, S., Garbayo, E., Díaz-Herráez, P., Prosper, F., & Blanco-Prieto, M. J. (2015). Heart regeneration after myocardial infarction using synthetic biomaterials. Journal of Controlled Release, 203, 23–38. 10.1016/j.jconrel.2015.02.009
Penha, V. C. S., Silva, Y. M. de O., Silva, G. C. da, & Queiroz, M. B. de. (2020). Produção De Microesferas De Quitosana Para Fins Farmacêuticos. Brazilian Journal of Development, 6(8), 55941–55973. 10.34117/bjdv6n8-129
Pereira, C. C. C., & Hentschke, G. S. (2019). O Uso da Pele de Tilápia como Curativo Biológico na Recuperação de Pacientes Queimados. Revista Das Semanas Acadêmicas, 5(2).
Pillai, C. K. S., Paul, W., & Sharma, C. P. (2009). Chitin and chitosan polymers: Chemistry, solubility and fiber formation. Progress in Polymer Science (Oxford), 34, 641–678. 10.1016/j.progpolymsci.2009.04.001
Pinheiro, C. J. G., Carreira, L. G., Brito, G. A. O., Baranano, A. G., Morais, P. A. B., & Pinheiro, I. R. (2018). Preparação e caracterização de hidrogel com nanopartícula de cério, calendula officinalis e bixa orellana L. como potenciais curativos de feridas crônicas. Universidade Federal do Espírito Santo.
Pires, A. L. R., Bierhalz, A. C. K., & Moraes, Â. M. (2015). Biomaterials: Types, Applications, and Market. Química Nova, 38(7), 957–971. 10.5935/0100-4042.20150094
Raut, H. K., Das, R., Liu, Z., Liu, X., & Ramakrishna, S. (2020). Biocompatibility of Biomaterials for Tissue Regeneration or Replacement. Biotechnology Journal, 15(12), 1–14. 10.1002/biot.202000160
Rehman, M., Madni, A., & Webster, T. J. (2018). The era of biofunctional biomaterials in orthopedics: what does the future hold? Expert Review of Medical Devices, 15(3), 193–204. 10.1080/17434440.2018.1430569
Santos, J. E. dos, Soares, J. da P., Dockal, E. R., Campana Filho, S. P., & Cavalheiro, É. T. G. (2003). Caracterização de quitosanas comerciais de diferentes origens. Polímeros, 13(4), 242–249. 10.1590/s0104-14282003000400009
Sharma, A., Delshad, M., Huh, C., & Pope, G. A. (2011). A practical method to calculate polymer viscosity accurately in numerical reservoir simulators. Proceedings - SPE Annual Technical Conference and Exhibition, 5, 3881–3894. 10.2118/147239-ms
Sigma-Aldrich. (2020). Product Product Specification Chitosan medium molecular weight. In Product Specification Chitosan medium molecular weight (p. 1). 10.1007/1-4020-4350-3_7
Sizílio, R. H., Galvão, J. G., Trindade, G. G. G., Pina, L. T. S., Andrade, L. N., & Gonsalves, J. K. M. C. (2018). Chitosan / pvp-based mucoadhesive membranes as a promising delivery system of betamethasone-17-valerate for aphthous stomatitis. Carbohydrate Polymers, 190(February), 339–345. 10.1016/j.carbpol.2018.02.079
Spin-Neto, R., Pavone, C., Moreno De Freitas, R., Adriana, R., Marcantonio, C., & Marcantonio-Júnior, E. (2008). Biomateriais à base de quitosana com aplicação médica e odontológica: revisão de literatura. Revista de Odontologia Da UNESP, 37(2), 155–161.
Tang, H., Zhang, P., Kieft, T. L., Ryan, S. J., Baker, S. M., Wiesmann, W. P., & Rogelj, S. (2010). Antibacterial action of a novel functionalized chitosan-arginine against Gram-negative bacteria. Acta Biomaterialia, 6(7), 2562–2571. 10.1016/j.actbio.2010.01.002
Tomaz, A. F. (2017). Desenvolvimento de membrana de quitosana/1, 4 naftoquinona para liberação controlada: curativo para feridas oncológicas.
Williams, D. F. (2009). On the nature of biomaterials. Biomaterials, 30(30), 5897–5909. 10.1016/j.biomaterials.2009.07.027
Zeugolis, D. I., & Pandit, A. (2015). Biofunctional biomaterials - The next frontier. Bioconjugate Chemistry, 26(7), 1157. 10.1021/acs.bioconjchem.5b00342
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Moises Marques Paiva; Evilasio Anisio Costa Filho; Bruna Giovanna Barbosa dos Santos; Kleilton Oliveira Santos; Wladymyr Jefferson Bacalhau de Sousa; Pedro Carlos de Assis Júnior; Márcio José Batista Cardoso
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.