Modulation of Chloroquine in nanoparticle uptake: a review

Authors

DOI:

https://doi.org/10.33448/rsd-v10i13.21639

Keywords:

Chloroquine; Mononuclear Phagocyte System; Kupffer Cells; Nanoparticles; Liver.

Abstract

The application of nanotechnology in several areas of medicine has been promising, however, there are still serious problems, such as in the area of oncology, for example. Although nanoparticles can accumulate 10 times more in tumors, less than 1% of the injected dose actually reaches the tumor, as they are retained mainly in the liver and spleen. Liver-specific macrophages, called Kupffer cells, are one of the main barriers to the use of nanoparticles for cancer treatment. These Kupffer Cells are part of the Mononuclear Phagocytic System (MPS) and exhibit endocytic activity against materials that pass through the blood and enter the liver. For this reason, Kupffer cells are central to the process of eliminating nanoparticles that cross the body's epithelial barriers. Still, chloroquine can act directly on the MPS, helping the nanoparticles reach their final target. This review addresses the main studies with chloroquine acting in the MPS, which could revolutionize cancer treatment or other biological applications.

Author Biographies

Thyago José Arruda Pacheco, University of Brasilia

Department of genetics and morphology

Vanderlene Pinto Brandão, Faculdade de Ciências da Saúde de Unaí

Department of Nursing

Marina Lima Rodrigues, University of Brasilia

Department of Genetics and Morphology

Maria das Neves Martins, Faculdade de Ciências da Saúde de Unaí

Department of Nursing

References

Amaravadi, R. K., Lippincott-Schwartz, J., Yin, X. M., Weiss, W. A., Takebe, N., Timmer, W., DiPaola, R. S., Lotze, M. T., & White, E. (2011). Principles and current strategies for targeting autophagy for cancer treatment. Clin Cancer Res, 17(4), 654-666. https://doi.org/10.1158/1078-0432.Ccr-10-2634

Bertrand, N., & Leroux, J. C. (2012). The journey of a drug-carrier in the body: an anatomo-physiological perspective. J Control Release, 161(2), 152-163. https://doi.org/10.1016/j.jconrel.2011.09.098

Cicchini, M., Karantza, V., & Xia, B. (2015). Molecular pathways: autophagy in cancer--a matter of timing and context. Clin Cancer Res, 21(3), 498-504. https://doi.org/10.1158/1078-0432.Ccr-13-2438

de Souza, D. G., & Pacheco, T. J. A. (2020). Chloroquine in human history. Amazon Digital Services LLC - KDP Print US. https://books.google.com.br/books?id=3PT6zQEACAAJ

dos Santos, S. N., Rezende Dos Reis, S. R., Pires, L. P, Helal-Neto, E., Sancenón, F., Barja-Fidalgo, T. C, Medina de Mattos, R., Nasciutti, L. E, Martínez-Máñez, R. , & Santos-Oliveira, R. (2017). Avoiding the mononuclear phagocyte system using human albumin for mesoporous silica nanoparticle system. Microporous and Mesoporous Materials, 251, 181-189. https://doi.org/https://doi.org/10.1016/j.micromeso.2017.06.005

Ho, B. N., Pfeffer, C. M., & Singh, A. T. (2017). Update on nanotechnology-based drug delivery systems in cancer treatment. Anticancer research, 37(11), 5975-5981.

Hu, T. Y, Frieman, M., & Wolfram, J. (2020). Insights from nanomedicine into chloroquine efficacy against COVID-19. Nature nanotechnology, 15(4), 247-249.

Joshi, P., Chakraborti, S., Ramirez-Vick, J. E, Ansari, Z. A, Shanker, V., Chakrabarti, P., & Singh, S. P. (2012). The anticancer activity of chloroquine-gold nanoparticles against MCF-7 breast cancer cells. Colloids and Surfaces B: Biointerfaces, 95, 195-200. https://doi.org/https://doi.o rg/10.1016/j.colsurfb.2012.02.039

Kimura, T., Takabatake, Y., Takahashi, A., & Isaka, Y. (2013). Chloroquine in cancer therapy: the double-edged sword of autophagy. Cancer research, 73(1), 3-7.

Kuma, A., & Mizushima, N. (2010). Physiological role of autophagy as an intracellular recycling system: with an emphasis on nutrient metabolism. Semin Cell Dev Biol, 21(7), 683-690. https://doi.org/10.1016/j.semcdb.2010.03.002

Maes, H., Kuchnio, A., Peric, A., Moens, S., Nys, K., De Bock, K., Quaegebeur, A., Schoors, S., Georgiadou, M., Wouters, J. , Vinckier, S., Vankelecom, H., Garmyn, M., Vion, A.-C., Radtke, F., Boulanger, C., Gerhardt, H., Dejana, E., Dewerchin, M., Ghesquière , B., Annaert, W., Agostinis, P., & Carmeliet, P. (2014). Tumor Vessel Normalization by Chloroquine Independent of Autophagy. Cancer Cell, 26(2), 190-206. https://doi.org/https://doi.org/10.1016/j.ccr.2014.06.025

Pacheco, T. J. A (2020). Modulation of lipid nanoemulsion uptake in the hepatic mononuclear phagocytic system by the action of chloroquine.

Pelt, J., Busatto, S., Ferrari, M., Thompson, E. A, Mody, K., & Wolfram, J. (2018). Chloroquine and nanoparticle drug delivery: A promising combination. Pharmacol Ther, 191, 43-49. https://doi.org/10.1016/j.pharmthera.2018.06.007

Raftery, M. J, Lalwani, P., Lutteke, N., Kobak, L., Giese, T., Ulrich, R. G, Radosa, L., Kruger, D. H, & Schonrich, G. (2020). Replication in the Mononuclear Phagocyte System (MPS) as a Determinant of Hantavirus Pathogenicity. Front Cell Infect Microbiol, 10, 281. https://doi.org/10.3389/fcimb.2020.00281

Sahay, G., Alakhova, D. Y., & Kabanov, A. V (2010). Endocytosis of nanomedicines. J Control Release, 145(3), 182-195. https://doi.org/10.1016/j.jconrel.2010.01.036

Wang, H., Thorling, C. A, Liang, X., Bridle, K. R, Grice, JE, Zhu, Y., Crawford, D. H. G., Xu, ZP, Liu, X., & Roberts, M. S. (2015). Diagnostic imaging and therapeutic application of nanoparticles targeting the liver [10.1039/C4TB01611D]. Journal of Materials Chemistry B, 3(6), 939-958. https://doi.org/10.1039/C4TB01611D

Wang, L.-F., Lin, Y.-S., Huang, N.-C., Yu, C.-Y., Tsai, W.-L., Chen, J.-J., Kubota, T., Matsuoka, M., Chen, S.-R., & Yang, C.-S. (2015). Hydroxychloroquine-inhibited dengue virus is associated with host defense machinery. Journal of Interferon & Cytokine Research, 35(3), 143-156.

Wilhelm, S., Tavares, AJ, Dai, Q., Ohta, S., Audet, J., Dvorak, HF, & Chan, WCW (2016). Analysis of nanoparticle delivery to tumors. Nature Reviews Materials, 1(5), 16014. https://doi.org/10.1038/natrevmats.2016.14

Wolfram, J., & Ferrari, M. (2019). Clinical cancer nanomedicine. Nano Today, 25, 85-98. https://doi.org/https://doi.org/10.1016/j.nantod.2019.02.005

Wolfram, J., Nizzero, S., Liu, H., Li, F., Zhang, G., Li, Z., Shen, H., Blanco, E., & Ferrari, M. (2017). A chloroquine-induced macrophage-preconditioning strategy for improved nanodelivery. Scientific Reports, 7(1), 13738. https://doi.org/10.1038/s41598-017-14221-2

Wolfram, J., Nizzero, S., Liu, H., Li, F., Zhang, G., Li, Z., Shen, H., Blanco, E., & Ferrari, M. (2017). A chloroquine-induced macrophage-preconditioning strategy for improved nanodelivery. Sci Rep, 7(1), 13738. https://doi.org/10.1038/s41598-017-14221-2

Zhang, Y., Liao, Z., Zhang, L.-j., & Xiao, H.-t. (2015). The utility of chloroquine in cancer therapy. Current medical research and opinion, 31(5), 1009-1013.

Downloads

Published

22/10/2021

How to Cite

PACHECO, T. J. A.; MORAIS, J. A. V. .; BRANDÃO, V. P.; RODRIGUES, M. L.; MARTINS, M. das N.; SOUZA, D. G. de . Modulation of Chloroquine in nanoparticle uptake: a review. Research, Society and Development, [S. l.], v. 10, n. 13, p. e600101321639, 2021. DOI: 10.33448/rsd-v10i13.21639. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/21639. Acesso em: 3 jan. 2025.

Issue

Section

Review Article