Modulation of Chloroquine in nanoparticle uptake: a review
DOI:
https://doi.org/10.33448/rsd-v10i13.21639Keywords:
Chloroquine; Mononuclear Phagocyte System; Kupffer Cells; Nanoparticles; Liver.Abstract
The application of nanotechnology in several areas of medicine has been promising, however, there are still serious problems, such as in the area of oncology, for example. Although nanoparticles can accumulate 10 times more in tumors, less than 1% of the injected dose actually reaches the tumor, as they are retained mainly in the liver and spleen. Liver-specific macrophages, called Kupffer cells, are one of the main barriers to the use of nanoparticles for cancer treatment. These Kupffer Cells are part of the Mononuclear Phagocytic System (MPS) and exhibit endocytic activity against materials that pass through the blood and enter the liver. For this reason, Kupffer cells are central to the process of eliminating nanoparticles that cross the body's epithelial barriers. Still, chloroquine can act directly on the MPS, helping the nanoparticles reach their final target. This review addresses the main studies with chloroquine acting in the MPS, which could revolutionize cancer treatment or other biological applications.
References
Amaravadi, R. K., Lippincott-Schwartz, J., Yin, X. M., Weiss, W. A., Takebe, N., Timmer, W., DiPaola, R. S., Lotze, M. T., & White, E. (2011). Principles and current strategies for targeting autophagy for cancer treatment. Clin Cancer Res, 17(4), 654-666. https://doi.org/10.1158/1078-0432.Ccr-10-2634
Bertrand, N., & Leroux, J. C. (2012). The journey of a drug-carrier in the body: an anatomo-physiological perspective. J Control Release, 161(2), 152-163. https://doi.org/10.1016/j.jconrel.2011.09.098
Cicchini, M., Karantza, V., & Xia, B. (2015). Molecular pathways: autophagy in cancer--a matter of timing and context. Clin Cancer Res, 21(3), 498-504. https://doi.org/10.1158/1078-0432.Ccr-13-2438
de Souza, D. G., & Pacheco, T. J. A. (2020). Chloroquine in human history. Amazon Digital Services LLC - KDP Print US. https://books.google.com.br/books?id=3PT6zQEACAAJ
dos Santos, S. N., Rezende Dos Reis, S. R., Pires, L. P, Helal-Neto, E., Sancenón, F., Barja-Fidalgo, T. C, Medina de Mattos, R., Nasciutti, L. E, Martínez-Máñez, R. , & Santos-Oliveira, R. (2017). Avoiding the mononuclear phagocyte system using human albumin for mesoporous silica nanoparticle system. Microporous and Mesoporous Materials, 251, 181-189. https://doi.org/https://doi.org/10.1016/j.micromeso.2017.06.005
Ho, B. N., Pfeffer, C. M., & Singh, A. T. (2017). Update on nanotechnology-based drug delivery systems in cancer treatment. Anticancer research, 37(11), 5975-5981.
Hu, T. Y, Frieman, M., & Wolfram, J. (2020). Insights from nanomedicine into chloroquine efficacy against COVID-19. Nature nanotechnology, 15(4), 247-249.
Joshi, P., Chakraborti, S., Ramirez-Vick, J. E, Ansari, Z. A, Shanker, V., Chakrabarti, P., & Singh, S. P. (2012). The anticancer activity of chloroquine-gold nanoparticles against MCF-7 breast cancer cells. Colloids and Surfaces B: Biointerfaces, 95, 195-200. https://doi.org/https://doi.o rg/10.1016/j.colsurfb.2012.02.039
Kimura, T., Takabatake, Y., Takahashi, A., & Isaka, Y. (2013). Chloroquine in cancer therapy: the double-edged sword of autophagy. Cancer research, 73(1), 3-7.
Kuma, A., & Mizushima, N. (2010). Physiological role of autophagy as an intracellular recycling system: with an emphasis on nutrient metabolism. Semin Cell Dev Biol, 21(7), 683-690. https://doi.org/10.1016/j.semcdb.2010.03.002
Maes, H., Kuchnio, A., Peric, A., Moens, S., Nys, K., De Bock, K., Quaegebeur, A., Schoors, S., Georgiadou, M., Wouters, J. , Vinckier, S., Vankelecom, H., Garmyn, M., Vion, A.-C., Radtke, F., Boulanger, C., Gerhardt, H., Dejana, E., Dewerchin, M., Ghesquière , B., Annaert, W., Agostinis, P., & Carmeliet, P. (2014). Tumor Vessel Normalization by Chloroquine Independent of Autophagy. Cancer Cell, 26(2), 190-206. https://doi.org/https://doi.org/10.1016/j.ccr.2014.06.025
Pacheco, T. J. A (2020). Modulation of lipid nanoemulsion uptake in the hepatic mononuclear phagocytic system by the action of chloroquine.
Pelt, J., Busatto, S., Ferrari, M., Thompson, E. A, Mody, K., & Wolfram, J. (2018). Chloroquine and nanoparticle drug delivery: A promising combination. Pharmacol Ther, 191, 43-49. https://doi.org/10.1016/j.pharmthera.2018.06.007
Raftery, M. J, Lalwani, P., Lutteke, N., Kobak, L., Giese, T., Ulrich, R. G, Radosa, L., Kruger, D. H, & Schonrich, G. (2020). Replication in the Mononuclear Phagocyte System (MPS) as a Determinant of Hantavirus Pathogenicity. Front Cell Infect Microbiol, 10, 281. https://doi.org/10.3389/fcimb.2020.00281
Sahay, G., Alakhova, D. Y., & Kabanov, A. V (2010). Endocytosis of nanomedicines. J Control Release, 145(3), 182-195. https://doi.org/10.1016/j.jconrel.2010.01.036
Wang, H., Thorling, C. A, Liang, X., Bridle, K. R, Grice, JE, Zhu, Y., Crawford, D. H. G., Xu, ZP, Liu, X., & Roberts, M. S. (2015). Diagnostic imaging and therapeutic application of nanoparticles targeting the liver [10.1039/C4TB01611D]. Journal of Materials Chemistry B, 3(6), 939-958. https://doi.org/10.1039/C4TB01611D
Wang, L.-F., Lin, Y.-S., Huang, N.-C., Yu, C.-Y., Tsai, W.-L., Chen, J.-J., Kubota, T., Matsuoka, M., Chen, S.-R., & Yang, C.-S. (2015). Hydroxychloroquine-inhibited dengue virus is associated with host defense machinery. Journal of Interferon & Cytokine Research, 35(3), 143-156.
Wilhelm, S., Tavares, AJ, Dai, Q., Ohta, S., Audet, J., Dvorak, HF, & Chan, WCW (2016). Analysis of nanoparticle delivery to tumors. Nature Reviews Materials, 1(5), 16014. https://doi.org/10.1038/natrevmats.2016.14
Wolfram, J., & Ferrari, M. (2019). Clinical cancer nanomedicine. Nano Today, 25, 85-98. https://doi.org/https://doi.org/10.1016/j.nantod.2019.02.005
Wolfram, J., Nizzero, S., Liu, H., Li, F., Zhang, G., Li, Z., Shen, H., Blanco, E., & Ferrari, M. (2017). A chloroquine-induced macrophage-preconditioning strategy for improved nanodelivery. Scientific Reports, 7(1), 13738. https://doi.org/10.1038/s41598-017-14221-2
Wolfram, J., Nizzero, S., Liu, H., Li, F., Zhang, G., Li, Z., Shen, H., Blanco, E., & Ferrari, M. (2017). A chloroquine-induced macrophage-preconditioning strategy for improved nanodelivery. Sci Rep, 7(1), 13738. https://doi.org/10.1038/s41598-017-14221-2
Zhang, Y., Liao, Z., Zhang, L.-j., & Xiao, H.-t. (2015). The utility of chloroquine in cancer therapy. Current medical research and opinion, 31(5), 1009-1013.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Thyago José Arruda Pacheco; José Athayde Vasconcelos Morais; Vanderlene Pinto Brandão; Marina Lima Rodrigues; Maria das Neves Martins; Danielle Galdino de Souza
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.