A narrative review of papers developed on the Amazon Tall Tower Observatory experimental site
DOI:
https://doi.org/10.33448/rsd-v10i14.21749Keywords:
ATTO; Bibliographic research; Amazon rainforest; Max Planck Institute.Abstract
This paper had the objective of making a narrative review through a bibliographical research on the articles developed in the experimental site Amazon Tall Tower Observatory (ATTO). In front of the database proposed by the Max Planck Institute, which has all peer-reviewed publications made within the ATTO experimental site from 2012 to 2021. So in this database, 81 peer-reviewed articles were found, where 12 were classified as a research area Ecological Studies (EE), 15 as Meteorological Conditions and Flows (CMF), 48 as Atmospheric Composition Measurements (MCA) and 6 characterized as Hybrids (H). The journal with the largest publications of this project is Atmospheric Chemistry and Physics, having published 29 articles from 2012 until September 24, 2021. So it can be concluded that during these 9 years of publications, the researches done on the ATTO experimental site were of great importance for understanding the effects of climate change in the Amazon Forest and a growing increase in this research over the years is expected.
References
Andreae, M. O., Acevedo, O. C., Araùjo, A., Artaxo, P., Barbosa, C. G. G., Barbosa, H. M. J., Brito, J., Carbone, S., Chi, X., Cintra, B. B. L., da Silva, N. F., Dias, N. L., Dias-Júnior, C. Q., Ditas, F., Ditz, R., Godoi, A. F. L., Godoi, R. H. M., Heimann, M., Hoffmann, T., … Yáñez-Serrano, A. M. (2015). The Amazon Tall Tower Observatory (ATTO): Overview of pilot measurements on ecosystem ecology, meteorology, trace gases, and aerosols. Atmospheric Chemistry and Physics, 15(18), 10723–10776. https://doi.org/10.5194/acp-15-10723-2015
Andreae, M. O., Artaxo, P., Beck, V., Bela, M., Freitas, S., Gerbig, C., Longo, K., Munger, J. W., Wiedemann, K. T., & Wofsy, S. C. (2012). Carbon monoxide and related trace gases and aerosols over the Amazon Basin during the wet and dry seasons. Atmospheric Chemistry and Physics, 12(13), 6041–6065. https://doi.org/10.5194/acp-12-6041-2012
Andreae, M. O. (2009). Correlation between cloud condensation nuclei concentration and aerosol optical thickness in remote and polluted regions. Atmospheric Chemistry and Physics, 9(2), 543–556. https://doi.org/10.5194/acp-9-543-2009
Andreae, M. O., Rosenfeld, D., Artaxo, P., Costa, A. A., Frank, G. P., Longo, K. M., & Silva-Dias, M. A. F. (2004). Smoking Rain Clouds over the Amazon. Science, 303(5662), 1337–1342. https://doi.org/10.1126/science.1092779
Andrews, A. E., Kofler, J. D., Trudeau, M. E., Williams, J. C., Neff, D. H., Masarie, K. A., Chao, D. Y., Kitzis, D. R., Novelli, P. C., Zhao, C. L., Dlugokencky, E. J., Lang, P. M., Crotwell, M. J., Fischer, M. L., Parker, M. J., Lee, J. T., Baumann, D. D., Desai, A. R., Stanier, C. O., … Tans, P. P. (2014). CO2, CO, and CH4 measurements from tall towers in the NOAA Earth System Research Laboratory’s Global Greenhouse Gas Reference Network: Instrumentation, uncertainty analysis, and recommendations for future high-accuracy greenhouse gas monitoring efforts. Atmospheric Measurement Techniques, 7(2), 647–687. https://doi.org/10.5194/amt-7-647-2014
Aniversário dos marcos da ATTO. (2020, agosto 14). ATTO - Amazon Tall Tower Observatory. Recuperado 24 de setembro de 2021, de https://www.attoproject.org/pt/atto-celebrates-anniversary-of-milestones/
Ansmann, A., Baars, H., Tesche, M., Müller, D., Althausen, D., Engelmann, R., Pauliquevis, T., & Artaxo, P. (2009). Dust and smoke transport from Africa to South America: Lidar profiling over Cape Verde and the Amazon rainforest. Geophysical Research Letters, 36(11), L11802. https://doi.org/10.1029/2009GL037923
Artaxo, P. (2002). Physical and chemical properties of aerosols in the wet and dry seasons in Rondônia, Amazonia. Journal of Geophysical Research, 107(D20), 8081. https://doi.org/10.1029/2001JD000666
Artaxo, P., Rizzo, L. V., Brito, J. F., Barbosa, H. M. J., Arana, A., Sena, E. T., Cirino, G. G., Bastos, W., Martin, S. T., & Andreae, M. O. (2013). Atmospheric aerosols in Amazonia and land use change: From natural biogenic to biomass burning conditions. Faraday Discussions, 165, 203. https://doi.org/10.1039/c3fd00052d
Baars, H., Ansmann, A., Althausen, D., Engelmann, R., Artaxo, P., Pauliquevis, T., & Souza, R. (2011). Further evidence for significant smoke transport from Africa to Amazonia: AFRICAN SMOKE IN AMAZONIA. Geophysical Research Letters, 38(20), n/a-n/a. https://doi.org/10.1029/2011GL049200
Bakwin, P. S., Tans, P. P., Hurst, D. F., & Zhao, C. (1998). Measurements of carbon dioxide on very tall towers: Results of the NOAA/CMDL program. Tellus B: Chemical and Physical Meteorology, 50(5), 401–415. https://doi.org/10.3402/tellusb.v50i5.16216
Ben-Ami, Y., Koren, I., Rudich, Y., Artaxo, P., Martin, S. T., & Andreae, M. O. (2010). Transport of North African dust from the Bodélé depression to the Amazon Basin: A case study. Atmospheric Chemistry and Physics, 10(16), 7533–7544. https://doi.org/10.5194/acp-10-7533-2010
Bevan, S. L., North, P. R. J., Grey, W. M. F., Los, S. O., & Plummer, S. E. (2009). Impact of atmospheric aerosol from biomass burning on Amazon dry-season drought. Journal of Geophysical Research, 114(D9), D09204. https://doi.org/10.1029/2008JD011112
Botía, S., Gerbig, C., Marshall, J., Lavric, J. V., Walter, D., Pöhlker, C., Holanda, B., Fisch, G., de Araújo, A. C., Sá, M. O., Teixeira, P. R., Resende, A. F., Dias-Junior, C. Q., van Asperen, H., Oliveira, P. S., Stefanello, M., & Acevedo, O. C. (2020). Understanding nighttime methane signals at the Amazon Tall Tower Observatory (ATTO). Atmospheric Chemistry and Physics, 20(11), 6583–6606. https://doi.org/10.5194/acp-20-6583-2020
Cirino, G. G., Souza, R. A. F., Adams, D. K., & Artaxo, P. (2014). The effect of atmospheric aerosol particles and clouds on net ecosystem exchange in the Amazon. Atmospheric Chemistry and Physics, 14(13), 6523–6543. https://doi.org/10.5194/acp-14-6523-2014
Department Biogeochemical Processes | ATTO / Publications. ([s.d.]). Recuperado Recuperado 24 de setembro de 2021, de https://www.bgc-jena.mpg.de/bgp/index.php/ATTO/Publications
Eck, T. F., Holben, B. N., Reid, J. S., O’Neill, N. T., Schafer, J. S., Dubovik, O., Smirnov, A., Yamasoe, M. A., & Artaxo, P. (2003). High aerosol optical depth biomass burning events: A comparison of optical properties for different source regions. Geophysical Research Letters, 30(20), 2003GL017861. https://doi.org/10.1029/2003GL017861
Formenti, P., Andreae, M. O., Lange, L., Roberts, G., Cafmeyer, J., Rajta, I., Maenhaut, W., Holben, B. N., Artaxo, P., & Lelieveld, J. (2001). Saharan dust in Brazil and Suriname during the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA)—Cooperative LBA Regional Experiment (CLAIRE) in March 1998. Journal of Geophysical Research: Atmospheres, 106(D14), 14919–14934. https://doi.org/10.1029/2000JD900827
Freud, E., Rosenfeld, D., Andreae, M. O., Costa, A. A., & Artaxo, P. (2008). Robust relations between CCN and the vertical evolution of cloud drop size distribution in deep convective clouds. Atmospheric Chemistry and Physics, 8(6), 1661–1675. https://doi.org/10.5194/acp-8-1661-2008
Kapsar, K., Hovis, C., Bicudo da Silva, R., Buchholtz, E., Carlson, A., Dou, Y., Du, Y., Furumo, P., Li, Y., Torres, A., Yang, D., Wan, H., Zaehringer, J., & Liu, J. (2019). Telecoupling Research: The First Five Years. Sustainability, 11(4), 1033. https://doi.org/10.3390/su11041033
Lelieveld, J., Butler, T. M., Crowley, J. N., Dillon, T. J., Fischer, H., Ganzeveld, L., Harder, H., Lawrence, M. G., Martinez, M., Taraborrelli, D., & Williams, J. (2008). Atmospheric oxidation capacity sustained by a tropical forest. Nature, 452(7188), 737–740. https://doi.org/10.1038/nature06870
Lin, J. C., Matsui, T., Pielke, R. A., & Kummerow, C. (2006). Effects of biomass-burning-derived aerosols on precipitation and clouds in the Amazon Basin: A satellite-based empirical study. Journal of Geophysical Research, 111(D19), D19204. https://doi.org/10.1029/2005JD006884
Martin, S. T., Andreae, M. O., Althausen, D., Artaxo, P., Baars, H., Borrmann, S., Chen, Q., Farmer, D. K., Guenther, A., Gunthe, S. S., Jimenez, J. L., Karl, T., Longo, K., Manzi, A., Müller, T., Pauliquevis, T., Petters, M. D., Prenni, A. J., Pöschl, U., … Zorn, S. R. (2010a). An overview of the Amazonian Aerosol Characterization Experiment 2008 (AMAZE-08). Atmospheric Chemistry and Physics, 10(23), 11415–11438. https://doi.org/10.5194/acp-10-11415-2010
Martin, S. T., Andreae, M. O., Artaxo, P., Baumgardner, D., Chen, Q., Goldstein, A. H., Guenther, A., Heald, C. L., Mayol-Bracero, O. L., McMurry, P. H., Pauliquevis, T., Pöschl, U., Prather, K. A., Roberts, G. C., Saleska, S. R., Silva Dias, M. A., Spracklen, D. V., Swietlicki, E., & Trebs, I. (2010b). Sources and properties of Amazonian aerosol particles. Reviews of Geophysics, 48(2), RG2002. https://doi.org/10.1029/2008RG000280
Martinez, M., Harder, H., Kubistin, D., Rudolf, M., Bozem, H., Eerdekens, G., Fischer, H., Klüpfel, T., Gurk, C., Königstedt, R., Parchatka, U., Schiller, C. L., Stickler, A., Williams, J., & Lelieveld, J. (2010). Hydroxyl radicals in the tropical troposphere over the Suriname rainforest: Airborne measurements. Atmospheric Chemistry and Physics, 10(8), 3759–3773. https://doi.org/10.5194/acp-10-3759-2010
Martins, J. A., Silva Dias, M. A. F., & Gonçalves, F. L. T. (2009). Impact of biomass burning aerosols on precipitation in the Amazon: A modeling case study. Journal of Geophysical Research, 114(D2), D02207. https://doi.org/10.1029/2007JD009587
Nölscher, A. C., Butler, T., Auld, J., Veres, P., Muñoz, A., Taraborrelli, D., Vereecken, L., Lelieveld, J., & Williams, J. (2014). Using total OH reactivity to assess isoprene photooxidation via measurement and model. Atmospheric Environment, 89, 453–463. https://doi.org/10.1016/j.atmosenv.2014.02.024
Observatório de Torre Alta. ([s.d.]). ATTO - Amazon Tall Tower Observatory. Recuperado 24 de setembro de 2021, de https://www.attoproject.org/pt/por-atto/por-atto/
Oliveira, P. H. F., Artaxo, P., Pires, C., De Lucca, S., ProcóPio, A., Holben, B., Schafer, J., Cardoso, L. F., Wofsy, S. C., & Rocha, H. R. (2007). The effects of biomass burning aerosols and clouds on the CO2 flux in Amazonia. Tellus B: Chemical and Physical Meteorology, 59(3), 338–349. https://doi.org/10.1111/j.1600-0889.2007.00270.x
Pacifico, F., Folberth, G. A., Sitch, S., Haywood, J. M., Rizzo, L. V., Malavelle, F. F., & Artaxo, P. (2015). Biomass burning related ozone damage on vegetation over the Amazon forest: A model sensitivity study. Atmospheric Chemistry and Physics, 15(5), 2791–2804. https://doi.org/10.5194/acp-15-2791-2015
Pöschl, U., Martin, S. T., Sinha, B., Chen, Q., Gunthe, S. S., Huffman, J. A., Borrmann, S., Farmer, D. K., Garland, R. M., Helas, G., Jimenez, J. L., King, S. M., Manzi, A., Mikhailov, E., Pauliquevis, T., Petters, M. D., Prenni, A. J., Roldin, P., Rose, D., … Andreae, M. O. (2010). Rainforest Aerosols as Biogenic Nuclei of Clouds and Precipitation in the Amazon. Science, 329(5998), 1513–1516. https://doi.org/10.1126/science.1191056
Rap, A., Spracklen, D. V., Mercado, L., Reddington, C. L., Haywood, J. M., Ellis, R. J., Phillips, O. L., Artaxo, P., Bonal, D., Restrepo Coupe, N., & Butt, N. (2015). Fires increase Amazon forest productivity through increases in diffuse radiation. Geophysical Research Letters, 42(11), 4654–4662. https://doi.org/10.1002/2015GL063719
Rizzo, L. V., Artaxo, P., Müller, T., Wiedensohler, A., Paixão, M., Cirino, G. G., Arana, A., Swietlicki, E., Roldin, P., Fors, E. O., Wiedemann, K. T., Leal, L. S. M., & Kulmala, M. (2013). Long term measurements of aerosol optical properties at a primary forest site in Amazonia. Atmospheric Chemistry and Physics, 13(5), 2391–2413. https://doi.org/10.5194/acp-13-2391-2013
Roberts, G. C., Andreae, M. O., Zhou, J., & Artaxo, P. (2001). Cloud condensation nuclei in the Amazon Basin: “Marine” conditions over a continent? Geophysical Research Letters, 28(14), 2807–2810. https://doi.org/10.1029/2000GL012585
Schafer, J. S. (2002). Atmospheric effects on insolation in the Brazilian Amazon: Observed modification of solar radiation by clouds and smoke and derived single scattering albedo of fire aerosols. Journal of Geophysical Research, 107(D20), 8074. https://doi.org/10.1029/2001JD000428
Sena, E. T., Artaxo, P., & Correia, A. L. (2013). Spatial variability of the direct radiative forcing of biomass burning aerosols and the effects of land use change in Amazonia. Atmospheric Chemistry and Physics, 13(3), 1261–1275. https://doi.org/10.5194/acp-13-1261-2013
Taraborrelli, D., Lawrence, M. G., Crowley, J. N., Dillon, T. J., Gromov, S., Groß, C. B. M., Vereecken, L., & Lelieveld, J. (2012). Hydroxyl radical buffered by isoprene oxidation over tropical forests. Nature Geoscience, 5(3), 190–193. https://doi.org/10.1038/ngeo1405
Vendrasco, E. P., Silva Dias, P. L., & Freitas, E. D. (2009). A case study of the direct radiative effect of biomass burning aerosols on precipitation in the Eastern Amazon. Atmospheric Research, 94(3), 409–421. https://doi.org/10.1016/j.atmosres.2009.06.016
Williams, E. (2002). Contrasting convective regimes over the Amazon: Implications for cloud electrification. Journal of Geophysical Research, 107(D20), 8082. https://doi.org/10.1029/2001JD000380
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Valkiria Andrade Costa
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.