The evolution of Selenium and Mercury research from 1700 to 2017 based on bibliometric analysis

Authors

DOI:

https://doi.org/10.33448/rsd-v9i2.2177

Keywords:

Mercury; Selenium; Scientific production.

Abstract

Selenium and Mercury are two chemical elements studied in several fields of knowledge due to their chemical properties and interactions. The aim of this study was to analyze the evolution of research activity from 1700 to 2017 on the global trend of these elements, we carried out a bibliometric analysis using the Scopus database. For each keyword accessed (“selenium”, “selenide”, “selenite”, “selenate”, “organoselenium”, “mercury”, “inorganic mercury”, “mercury vapor” and “methylmercury”), we analyzed the publication output, and the top 5 geographic distribution of publications and contributing authors, as well as the top 5 Scopus subject categories where the documents are indexed. The results demonstrated an increase in the number of publication over time for all the keywords. Research about Selenium and its inorganic and organic chemical forms, and Mercury and its inorganic and organic chemical forms were described in approximately 117,000 and 164,000 documents, respectively. United States was the country with the highest number of published documents in all the keywords analyzed. Chemistry, Medicine and Environmental Science were the subject categories with the highest number of documents. Researchers from the United States, China, Japan, Slovenia, and Brazil were in the ranking of the most productive authors. To our knowledge, this is the first bibliometric study on Selenium and Mercury and can be useful to identify potential research groups for scientific collaborations.

 

References

Abramo, G., D’Angelo, C. A., & Viel, F. (2011). The field-standardized average impact of national research systems compared to world average: the case of Italy. Scientometrics, 88(2), 599–615.

Aschner, M., & Aschner, J. L. (1990). Mercury neurotoxicity: Mechanisms of blood-brain barrier transport. Neuroscience & Biobehavioral Reviews, 14(2), 169–176.

Aschner, M., & Clarkson, T. W. (1988). Uptake of methylmercury in the rat brain: effects of amino acids. Brain Research, 462(1), 31–39.

Baker, J. P. (2008). Mercury, Vaccines, and Autism. American Journal of Public Health, 98(2), 244–253.

Bakir, F., Damluji, S. F., Amin-Zaki, L., Murtadha, M., Khalidi, A., Al-Rawi, N. Y., Tikriti, S., Dhahir, H. I., Clarkson T. W., Smith J. C., & Doherty, R. A. (1973). Methylmercury Poisoning in Iraq. Science, 181(4096), 230–241.

Bianchetti, L., & Fávero, O. (2005). História e histórias da pós-graduação em educação no Brasil. Revista Brasileira de Educação, 30, 03-06.

Bjorklund, G., Aaseth, J., Ajsuvakova, O. P., Nikonorov, A. A., Skalny, A. V., Skalnaya, M. G., & Tinkov, A. A. (2017). Molecular interaction between mercury and selenium in neurotoxicity. Coordination Chemistry Reviews, 332, 30–37.

Bridges, C. C., & Zalups, R. K. (2010). Transport of Inorganic Mercury and Methylmercury in Target Tissues and Organs. Journal of Toxicology and Environmental Health, Part B, 13(5), 385–410.

Bruchez, Jr., Morone, M., Gin, P., Weiss, S., Alivisatos A. P. (1998). Semiconductor Nanocrystals as Fluorescent Biological Labels. Science, 281(5385), 2013–2016.

Burger, J., & Gochfeld, M. (2005). Heavy metals in commercial fish in New Jersey. Environmental Research, 99(3), 403–412.

Burger, J., Gochfeld, M., Jeitner, C., Zappalorti, R., Pittfield, T., & DeVito, E. (2017). Arsenic, Cadmium, Chromium, Lead, Mercury and Selenium Concentrations in Pine Snakes (Pituophis melanoleucus) from the New Jersey Pine Barrens. Archives of Environmental Contamination and Toxicology, 72(4), 586–595.

Burger, J., Schreiber, E. A. E., & Gochfeld, M. (1992). Lead, cadmium, selenium and mercury in seabird feathers from the tropical mid-pacific. Environmental Toxicology and Chemistry, 11(6), 815–822.

Cañas-Guerrero, I., Mazarrón, F. R., Pou-Merina, A., Calleja-Perucho, C., & Díaz-Rubio, G. (2013). Bibliometric analysis of research activity in the “Agronomy” category from the Web of Science, 1997–2011. European Journal of Agronomy, 50, 19–28.

Cao, X., Huang, Y., Wang, J., & Luan, S. (2012). Research status and trends in limnology journals: a bibliometric analysis based on SCI database. Scientometrics, 92(3), 735–746.

Cardoso, B. R., Hare, D. J., & Bush, A. I. (2017). The Role of Selenium in Neurodegenerative Diseases. Biometals in Neurodegenerative Diseases: Mechanisms and Therapeutics. 35–49.

Chapman, L., & Chan, H. M. (2000). The influence of nutrition on methyl mercury intoxication. Environmental Health Perspectives, 108(1), 29–56.

Cirani C.B.S., Campanario, M.A., & Silva, H.H.M. (2015). A evolução do ensino da pós-graduação senso estrito no Brasil: análise exploratória e proposições para pesquisa, Avaliação, 20(1), 163-187.

Clarkson, T. W., Magos, L., & Myers, G. J. (2003). The Toxicology of Mercury — Current Exposures and Clinical Manifestations. New England Journal of Medicine, 349(18), 1731–1737.

Clarkson, T. W., & Magos, L. (2006). The Toxicology of Mercury and Its Chemical Compounds. Critical Reviews in Toxicology, 36(8), 609–662.

Clarkson, T. W., Vyas, J. B., & Ballatori, N. (2007). Mechanisms of mercury disposition in the body. American Journal of Industrial Medicine, 50(10), 757–764.

Contreas, C. (1999). El reemplazo del benefício de patio en la minería peruana, 1850-1913. Revista de Indias. 59, 391-416.

Coura, Jr., Willcox L.C.B. (2003). Impact factor, scientific production and quality of Brazilian Medical Journals. Memorias Instituto Oswaldo Cruz. 98(3), 293-297.

Dabbousi, B. O., Rodriguez-Viejo, J., Mikulec, F. V., Heine, J. R., Mattoussi, H., Ober, R., Jensen K.F., & Bawendi, M. G. (1997). (CdSe)ZnS Core−Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites. The Journal of Physical Chemistry B, 101(46), 9463–9475.

Debes, F., Budtz-Jørgensen, E., Weihe, P., White, R. F., & Grandjean, P. (2006). Impact of prenatal methylmercury exposure on neurobehavioral function at age 14 years. Neurotoxicology and Teratology, 28(5), 536–547.

Dos Santos, A. A., Appel Hort, M., Culbreth, M., López-Granero, C., Farina, M., Rocha, J. B. T., & Aschner, M. (2016). Methylmercury and brain development: A review of recent literature. Journal of Trace Elements in Medicine and Biology, 38, 99–107.

Ekino, S., Susa, M., Ninomiya, T., Imamura, K., & Kitamura, T. (2007). Minamata disease revisited: An update on the acute and chronic manifestations of methyl mercury poisoning. Journal of the Neurological Sciences, 262(1-2), 131–144.

El-Bayoumy, K., Narayanan, B.A., Desai D.H., Narayanan, N.K., Pittman, B. Amin, S.G., Schwartz, J., & Nixon D.W. (2003). Elucidation of molecular targets of mammary cancer chemoprevention in the rat by organoselenium compounds using cDNA microarray. Carcinogenesis, 24(9), 1505–1514.

El-Bayoumy, K., & Sinha, R. (2004). Mechanisms of mammary cancer chemoprevention by organoselenium compounds. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 551(1-2), 181–197.

El-Bayoumy K. (1997). Organoselenium compounds: A novel class of cancer chemopreventive agents. Drugs Future. 22(5) 539-545.

Farina, M., Barbosa, N. B. V., Nogueira, C. W., Folmer, V., Zeni, G., Andrade, L. H., Braga, A.L., Rocha, J. B. T. (2002). Reaction of diphenyl diselenide with hydrogen peroxide and inhibition of delta-aminolevulinate dehydratase from rat liver and cucumber leaves. Brazilian Journal of Medical and Biological Research, 35(6), 623–631.

Farina, M., Rocha, J. B. T., & Aschner, M. (2011). Mechanisms of methylmercury-induced neurotoxicity: Evidence from experimental studies. Life Sciences, 89(15-16), 555–563.

Feng, X., & Qiu, G. (2008). Mercury pollution in Guizhou, Southwestern China — An overview. Science of The Total Environment, 400(1-3), 227–237.

Gajdosechova, Z., Mester, Z., Feldmann, J., & Krupp, E. M. (2018). The role of selenium in mercury toxicity – Current analytical techniques and future trends in analysis of selenium and mercury interactions in biological matrices. Trends in Analytical Chemistry, 104, 95–109.

Gao, Z., Ying, X., Yan, J., Wang, J., Cai, S., & Yan, C. (2017). Acute mercury vapor poisoning in a 3-month-old infant: A case report. Clínica Chimica Acta, 465, 119–122.

Glaser, V., Moritz, B., Schmitz, A., Dafré, A. L., Nazari, E. M., Müller, Y. M. R., Feska, L., Straliottoa, M. R., De-Bem, A. F.,Farina, M., Rocha, J.B.T., & Latini, A. (2013). Protective effects of diphenyl diselenide in a mouse model of brain toxicity. Chemico-Biological Interactions, 206(1), 18–26.

Grandjean, P., Budtz-Jorgensen, E., Jorgensen, P. J., & Weihe, P. (2005). Umbilical Cord Mercury Concentration as Biomarker of Prenatal Exposure to Methylmercury. Environmental Health Perspectives, 113(7), 905–908.

Grandjean, P., Murata, K., Budtz-Jorgensen, E., & Weihe, P. (2004). Cardiac autonomic activity in methylmercury neurotoxicity: 14-year follow-up of a Faroese birth cohort. The Journal of Pediatrics, 144(2), 169–176.

Hatfield, D. L., Tsuji, P. A., Carlson, B. A., & Gladyshev, V. N. (2014). Selenium and selenocysteine: roles in cancer, health, and development. Trends in Biochemical Sciences, 39(3), 112–120.

Horai, S., Itai, T., Noguchi, T., Yasuda, Y., Adachi, H., Hyobu, Y., Hyobu, Y., Riyadi A. S., Booggs, A.S.P., Lowera, R., Guillette, L. I., & Tanabe, S. (2014). Concentrations of trace elements in American alligators (Alligator mississippiensis) from Florida, USA. Chemosphere, 108, 159–167.

Horowitz, H. M., Jacob, D. J., Amos, H. M., Streets, D. G., & Sunderland, E. M. (2014). Historical Mercury Releases from Commercial Products: Global Environmental Implications. Environmental Science & Technology, 48(17), 10242–10250.

Horvat, M., Byrne, A. R., & May, K. (1990). A modified method for the determination of methylmercury by gas chromatography. Talanta, 37(2), 207–212.

Horvat, M., Kotnik, J., Logar, M., Fajon, V., Zvonarić, T., & Pirrone, N. (2003). Speciation of mercury in surface and deep-sea waters in the Mediterranean Sea. Atmospheric Environment, 37, 93–108.

Horvat, M., Liang, L., & Bloom, N. S. (1993). Comparison of distillation with other current isolation methods for the determination of methyl mercury compounds in low level environmental samples. Analytica Chimica Acta, 282(1), 153–168.

Hu, X. F., Eccles, K. M., & Chan, H. M. (2017). High selenium exposure lowers the odds ratios for hypertension, stroke, and myocardial infarction associated with mercury exposure among Inuit in Canada. Environment International, 102, 200–206.

Iano, F. G., Santos, O. S., Silva, T. L., Pereira, M. A., Figueiredo, P. J. M., Alberguini, L. B. A., & Granjeiro, J. M. (2008). Optimizing the procedure for mercury recovery from dental amalgam. Brazilian Oral Research, 22(2), 119–124.

Ikemoto, T., Kunito, T., Tanaka, H., Baba, N., Miyazaki, N., & Tanabe, S. (2004). Detoxification Mechanism of Heavy Metals in Marine Mammals and Seabirds: Interaction of Selenium with Mercury, Silver, Copper, Zinc, and Cadmium in Liver. Archives of Environmental Contamination and Toxicology, 47(3), 402-413.

Imura, N., & Naganuma, A. (1978). Interaction of inorganic mercury and selenite in rabbit blood after intravenous administration. Journal of Pharmacobio-Dynamics, 1(2), 67–73.

Jacso, P. (2005). As we may search—Comparison of major features of the Web of Science, Scopus, and Google Scholar citation-based and citation-enhanced databases. Current Science Association. 89(9), 1537-1547.

Jensen, J. L., Maynard, D. F., Shaw, G. R., & Smith, T. W. (1992). Chemical reactions mediated by heavy metal ions. 2. Mercury ligation effects on the mercury(II)-promoted hydrolyses of benzaldehyde O-ethyl S-ethyl and S-phenyl acetals. The Journal of Organic Chemistry, 57(7), 1982–1986.

Ju, W., Li, X., Li, Z., Wu, G. R., Fu, X. F., Yang, X. M., Zhang, X.Q., & Gao, X. B. (2017). The effect of selenium supplementation on coronary heart disease: A systematic review and meta-analysis of randomized controlled trials. Journal of Trace Elements in Medicine and Biology, 44, 8–16.

Kamdem, J.P., Abolaji, A.O., Roos, D.H., Calabró, L., Barbosa, N. V., Souza, D. O., & Rocha J.B.T. (2016). Scientific performance of Brazilian researchers in pharmacology with grants from CNPq: A comparative study within the Brazilian categories. Anais Academia Brasileira de Ciências. 88(3), 1735-1742.

Kamdem, J. P., Fidelis, K. R., Nunes, R. G. S., Araujo, I. F., Elekofehinti, O. O., da Cunha, F. A. B., De Menezes, I. R. A., Pinheiro, A. P, Duarte, A. E., & Barros, L. M. (2017). Comparative research performance of top universities from the northeastern Brazil on three pharmacological disciplines as seen in scopus database. Journal of Taibah University Medical Sciences, 12(6), 483–491.

Kamdem, J. P., Roos, D. H., Sanmi, A. A., Calabró, L., Abolaji, A. O., Oliveira, C. S., Barros, L. M., Duarte, A.E., Barbosa, N.V., Souza D. O., & Rocha, J. B. T. (2018). Productivity of CNPq Researchers from Different Fields in Biomedical Sciences: The Need for Objective Bibliometric Parameters—A Report from Brazil. Science and Engineering Ethics, 25(3), 1037-1055.

Keith, A. (1798). XI. Description of a barometer, which marks the rise and fall of the mercury from two different times of observation. The Philosophical Magazine, 2(5), 65–67.

Kim, E. Y., Saeki, K., Tanabe, S., Tanaka, H., & Tatsukawa, R. (1996). Specific accumulation of mercury and selenium in seabirds. Environmental Pollution, 94(3), 261–265.

Lang, E. S., & Comasseto, J. V. (1988). Reduction of Organoselenium and Tellurium Halides and Oxides with Thiourea Dioxide. Synthetic Communications, 18(3), 301–305.

Leta, J., Thijs, B., & Glänzel, W. (2013). A macro-level study of science in Brazil: seven years later. Encontros Bibli: Revista Eletrônica de Biblioteconomia e Ciência Da Informação, 18(36), 51-66.

Leta J. (2012). Brazilian growth in the mainstream science: The role of human resources and national journals. Journal of Scientometric Research. 1(1), 44-52.

Leydesdorff, L., de Moya-Anegón, F., & Guerrero-Bote, V. P. (2015). Journal maps, interactive overlays, and the measurement of interdisciplinarity on the basis of Scopus data (1996-2012). Journal of the Association for Information Science and Technology, 66(5), 1001–1016.

Liang, L., Horvat, M., & Bloom, N. S. (1994). An improved speciation method for mercury by GC/CVAFS after aqueous phase ethylation and room temperature precollection. Talanta, 41(3), 371–379.

Liang, L., Horvat, M., Cernichiari, E., Gelein, B., & Balogh, S. (1996). Simple solvent extraction technique for elimination of matrix interferences in the determination of methylmercury in environmental and biological samples by ethylation-gas chromatography-cold vapor atomic fluorescence spectrometry. Talanta, 43(11), 1883–1888.

Liu, J., Xu, X., Yu, S., Cheng, H., Hong, Y., & Feng, X. (2014). Mercury pollution in fish from South China Sea: Levels, species-specific accumulation, and possible sources. Environmental Research, 131, 160–164.

Magnore E. (2012). How much Vanadium is there in paper? A bibliometric overview of the global scientific production on Vanadium. In: Baranova, V.N., & Fortunatov, A.V. (Eds.) Vanadium: Chemical Properties, Uses and Environmental Effects. Ed. I; Nova Science Publishers: New York, NY, USA.

Malehase, T., Daso, A. P., & Okonkwo, J. O. (2017). Initiatives to combat mercury use in artisanal small-scale gold mining: A review on issues and challenges. Environmental Reviews, 25(2), 218–224.

Menzies, A. W. C. (1919). New Measurements of the Vapor Pressure of Mercury. Proceedings of the National Academy of Sciences, 5(12), 558–562.

Murata, K., Weihe, P., Budtz-Jorgensen, E., Jorgensen, P. J., & Grandjean, P. (2004). Delayed brainstem auditory evoked potential latencies in 14-year-old children exposed to methylmercury. The Journal of Pediatrics, 144(2), 177–183.

Naganuma, A., & Imura, N. (1980). Bis(methylmercuric) selenide as a reaction product from methylmercury and selenite in rabbit blood. Reseach Communocations Chemical Patholog Pharmacology. 27(1), 163-173.

Nobre, L. N.; & Freitas, R. R. (2017). A evolução da pós-graduação no Brasil: Histórico, política e avaliação. Brazilian Journal of Production Engineering. 3(2), 18-30.

Nogueira, C. W., & Rocha, J. B. T. (2011). Toxicology and pharmacology of selenium: emphasis on synthetic organoselenium compounds. Archives of Toxicology, 85(11), 1313–1359.

Nogueira, C. W., Zeni, G., & Rocha, J. B. T. (2004). Organoselenium and Organotellurium Compounds: Toxicology and Pharmacology. Chemical Reviews, 104(12), 6255–6286.

Oldfield, J.E. (1998). Environmental implications of uses of seleniumwith animals. In: Frankenberger Jr., W.T., & Engberg, R.A. (Eds.): Environmental Chemistry of Selenium (pp. 129–142). Dekker, New York.

Oliveira C.S., Nogara P.A., Ardisson-Araújo, D.M.P., Aschner, M., Rocha J. B. T., & Dórea, J.G. (2018). Neurodevelopmental effects of mercury. In: Aschner, M. & Costa, L. (Eds.) Linking environmental exposure to neurodevelopmental disorders. Advances in Neurotoxicology 2(1), (pp.27-86). Elsevier.

Oliveira, C.S., Picolli, B.C., Aschner, M., ROCHA, J.B.T. (2017). Chemical speciation of selenium and mercury as determinant of their neurotoxicity. In: Aschner, M. & Costa, L. (Eds.) Neurotoxicity of Metals. Advances in Neurobiology (pp. 53-83). Springer.

Ori, M. R., Larsen, J. B., & Shirazi, F. M. (2018). Mercury Poisoning in a Toddler from Home Contamination due to Skin-Lightening Cream. The Journal of Pediatrics, 196, 314–317.

Park, J.-D., & Zheng, W. (2012). Human Exposure and Health Effects of Inorganic and Elemental Mercury. Journal of Preventive Medicine & Public Health, 45(6), 344–352.

Qiu, G., Feng, X., Wang, S., & Shang, L. (2006). Environmental contamination of mercury from Hg-mining areas in Wuchuan, northeastern Guizhou, China. Environmental Pollution, 142(3), 549–558.

Qiu, G., Feng, X., Wang, S., & Shang, L. (2005). Mercury and methylmercury in riparian soil, sediments, mine-waste calcines, and moss from abandoned Hg mines in east Guizhou province, southwestern China. Applied Geochemistry, 20(3), 627–638.

Regalado, A. (2010). Brazilian Science: Riding a Gusher. Science, 330(6009), 1306–1312.

Nogueira, C. W., & Rocha, J. B. . (2010). Diphenyl diselenide a janus-faced molecule. Journal of the Brazilian Chemical Society, 21(11), 2055–2071.

Rocha, J.B.T., Oliveira, C.S., & Nogara, P.A. (2017). Toxicology and anticancer activity of synthetic organoselenium compounds. In: Jain, V.K., & Pryadarsini, K.I. (Eds.) Organoselenium Compounds in Biology and Medicine: Synthesis, Biological and Therapeutic Treatments (pp. 342-376). Royal Society of Chemistry.

Rocha, J.B.T., Piccoli, B.C., & Oliveira, C.S. (2017). Biological and chemical interest in selenium: a brief historical account. Arkivoc, ii, 457-491.

Rodier, P.M., Aschner, M., & Sager, P. R. (1984). Mitotic arrest in the developing CNS after prenatal exposure to methylmercury. Neurobehavoral Toxicology Teratology, 6(5), 379-385.

Rosenfeld, I., & Beath, O. (1964). Selenium Geobotany, Biochemistry, Toxicity and Nutrition. Academic Press, New York.

Sakamoto, M., Yasutake, A., Kakita, A., Ryufuku, M., Chan, H. M., Yamamoto, M., Oumi, S., Kobayashi, S., & Watanabe, C. (2013). Selenomethionine Protects against Neuronal Degeneration by Methylmercury in the Developing Rat Cerebrum. Environmental Science & Technology, 47(6), 2862–2868.

Santin, D. M., Vanz, S. A. S., & Stumpf, I. R. C. (2016). Collaboration Networks in the Brazilian Scientific Output in Evolutionary Biology: 2000-2012. Anais Da Academia Brasileira de Ciências, 88(1), 165–178.

Sarquis, M., & Mickey, C. D. (1980). Selenium. Part 1: Its chemistry and occurrence. Journal of Chemical Education, 57(12), 886-889.

Shanker, G., & Aschner, M. (2003). Methylmercury-induced reactive oxygen species formation in neonatal cerebral astrocytic cultures is attenuated by antioxidants. Molecular Brain Research, 110(1), 85–91.

Schummer, J. (1997). Scientometric studies on chemistry I: The exponential growth of chemical substances, 1800–1995. Scientometrics, 39(1), 107–123.

Tirloni, B., Schulz Lang, E., & Oliveira, G. M. (2013). Synthesis, crystal structure and optical features of new Hg–Se clusters. Polyhedron, 62, 126–132.

Urano, T., Imura, N., & Naganuma, A. (1997). Inhibitory Effect of Selenium on Biliary Secretion of Methyl Mercury in Rats. Biochemical and Biophysical Research Communications, 239(3), 862–867.

Vasconcelos, S. M. R., Sorenson, M. M., Watanabe, E. H., Foguel, D., & Palácios, M. (2015). Brazilian Science and Research Integrity: Where are We? What Next? Anais Da Academia Brasileira de Ciências, 87(2), 1259–1269.

Yasuda, Y., Matsuyama, A., Yasutake, A., Yamaguchi, M., Aramaki, R., Xiaojie, L., Pin, J., Yumin, A., Li, L., Mei, L., Wei, C., & Liya, Q. (2004). Mercury Distribution in Farmlands Downstream from an Acetaldehyde Producing Chemical Company in Qingzhen City, Guizhou, People?s Republic of China. Bulletin of Environmental Contamination and Toxicology, 72(3), 445–451.

Yurkerwich, K., Quinlivan, P. J., Rong, Y., & Parkin, G. (2016). Phenylselenolate mercury alkyl compounds, PhSeHgMe and PhSeHgEt: Molecular structures, protolytic Hg–C bond cleavage and phenylselenolate exchange. Polyhedron, 103, 307–314.

Zalups, R. K. (1991). Autometallographic localization of inorganic mercury in the kidneys of rats: Effect of unilateral nephrectomy and compensatory renal growth. Experimental and Molecular Pathology, 54(1), 10–21.

Zalups, R. K. (1998). Basolateral Uptake of Inorganic Mercury in the Kidney. Toxicology and Applied Pharmacology, 151(1), 192–199.

Zalups R.K. (1997). Enhanced renal outer medullary uptake of mercury associated with uninephrectomy: Implication of a luminal mechanism. Journal of Toxicology and Environmental Health, 50(2), 173–194.

Zalups, R.K. (2000). Molecular interactions with mercury in the kidney. Pharmacological Reviews. 52(1), 113-143.

Zalups, R. K. (1995). Organic Anion Transport and Action of γ-Glutamyl Transpeptidase in Kidney Linked Mechanistically to Renal Tubular Uptake of Inorganic Mercury. Toxicology and Applied Pharmacology, 132(2), 289–298.

Downloads

Published

01/01/2020

How to Cite

NOGARA, P. A.; SCHMITZ, G. L.; COSTA, N. de S.; KAMDEM, J. P.; ROCHA, J. B.; OLIVEIRA, C. S. The evolution of Selenium and Mercury research from 1700 to 2017 based on bibliometric analysis. Research, Society and Development, [S. l.], v. 9, n. 2, p. e150922177, 2020. DOI: 10.33448/rsd-v9i2.2177. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/2177. Acesso em: 15 jan. 2025.

Issue

Section

Review Article