Cellular feasibility study of Acutodesmus obliquus

Authors

DOI:

https://doi.org/10.33448/rsd-v10i15.22372

Keywords:

Acutodesmus obliquus; Cell viability; Freezing; Cooling; Cryoprotective substances.

Abstract

The development and validation of efficient microalgae conservation methods is essential for the establishment and constitution of long-term culture collections, as well as for programming for breeding and possible genetic modification of algae. However, each species of microalgae demonstrates responses considered unpredictable, and thus, making it difficult to standardize universal methods so far. The results presented in this study indicate time as a limiting factor for the conservation of A. obliquus, in the methods of conservation by refrigeration, freezing and freezing with the use of cryoprotectants, such as DMSO, Gli and Poly. Freezing with the use of cryoprotective substances demonstrated satisfactory efficiency in the conservation of microalgae, and thus, surprisingly, in conservation by refrigeration. As already known, conservation by freezing only showed low efficiency, since the cells are broken by the formation of ice crystals in their interior, and thus, making the microalgae conservation unfeasible for a longer period. The study effectively showed the conservation of A. obliquus by refrigeration and freezing with the use of cryoprotective substances mentioned in this work.

References

Andersen, R. A., Berges, F. A., Harrison, P. F., & Watanabe, M. M. (2005). Algal Culturing Techniques: Appendix A. Recipes for freshwater and seawater media. Andersen RA, Elsevier Academic Press, 429-538.

Aslani, A., Mohammadi, M., Gonzalez, M. J. I., Sobczuk, T. M., Nazari, M., & Bakhtiar, A. (2018). Evaluation of the potentials and feasibility of microalgae production in Iran. Bioresource Technology Reports, (1): 24-30. https://doi.org/10.1016/j.biteb.2017.12.001

Branco, K. B. Z. F., Balmant, W., Trevisan, E., Taher, D. M., Mariano, A. B., & Arroyo, P. A. (2020). Phenomenological modeling of Acutodesmus obliquus microalgae in situ transesterification. Biochemical Engineering Journal, (154): 1-37. https://doi.org/10.1016/j.bej.2019.107434

Choi, W. J., Chae, A. N., Song, K. G., Park, J., & Lee, B. C. (2019). Effect of trophic conditions on microalga growth, nutrient removal, algal organic matter, and energy storage products in Scenedesmus (Acutodesmus) obliquus KGE-17 cultivation. Bioprocess and Biosystems Engineering, (42): 1225-1234. https://doi.org/10.1007/s00449-019-02120-x

Da Luz, D. S., Da Silva, D. G., Souza, M. M., Giroldo, D., & Martins, C. M. G. (2016). Efficiency of neutral red, evans blue and MTT to assess viability of the freshwater microalgae Desmodesmus communis and Pediastrum boryanum. Phycological Research, (64): 56-60. https://doi.org/10.1111/pre.12114

D’Alessandro, E. B., & Antoniosi Filho, N. R. (2016). Concepts and studies on lipid and pigments of microalgae: A review. Renewable and Sustainable Energy Reviews, (58): 832-841. https://doi.org/10.1016/j.rser.2015.12.162

D’Alessandro, E. B., Soares, A. T., Pereira, J., & Antoniosi Filho, N. R. (2018). Viability of biodiesel production from a thermophilic microalga in conventional and alternative culture media. Brazilian Journal of Botany, (41): 319-327. https://doi.org/10.1007/s40415-018-0459-7

D’Alessandro, E. B., Soares, A. T., D’Alessandro, N. C. O., & Antoniosi Filho, N. R. (2019). Potential use of a thermal water cyanobacterium as raw material to produce biodiesel and pigments. Bioprocess and Biosystems Engineering, (42): 2015-2022. https://doi.org/10.1007/s00449-019-02196-5

Fernades, M. S., Calsing, L. C. G., Nascimento, R. C., Santana, H., Morais, P. B., Capdeville, G., & Brasil, B. S. A. F. (2019). Customized cryopreservation protocols for chlorophyles based on cell morphology. Algal Research, (38): 1-9. https://doi.org/10.1016/J.ALGAL.2018.101402

Hanashiro, R. H. R., Stoco, C. B., Oliveira, T. V., Lenzi, M. K., Mariano, A. B., & Vieira, R. B. (2019). Experimental validation of hindered settling models and flux theory applied in continuous flow process for harvesting Acutodesmus obliquus. The Canadian Journal of Chemical Engineering, (97): 1903-1912. https://doi.org/10.1002/cjce.23467

Hegewald, E., & Hanagata, N. (2000). Phylogenetic studies on Scenedesmaceae (Chlorophyta). Archiv für Hydrobiologie, suppl., Algological Studies, (100): 29-49. https://doi.org/10.1127/algol_stud/100/2000/29

Kapoore, R. V., Huete-Ortega, M., Day, J. G., Okurowska, K., Slocombe, S. P., Stanley, M. S., & Vaidyanathan, S (2019). Effects of cryopreservation on viability and funtional stability of an industrially relevant alga. Scientific Reports, (9): 1-12. https://doi.org/10.1038/s41598-019-38588-6

Lourenço, S. O. Cultivo de microalgas marinhas – princípios e aplicações. RiMa, 2006, 606 p.

Preisig, H. R., & Andersen, R. A. (2005). Algal Culturing Techniques: Historical review of algal culturing techniques. Andersen RA, Elsevier Academic Press, 1-12.

Selvan, S. T., Govindasamy, B., Muthusamy, S., & Ramamurthy, D. (2019). Exploration of green integrated approach for effluent treatment through mass culture and biofuel production from unicellular alga, Acustodesmus obliquus RDS01. International Journal of Phytoremediation, (21): 1305-1322. https://doi.org/10.1080/15226514.2019.1633255

Soares, A. T., da Costa, D. C., Silva, B. F., Lopes, R. G., Derner, R. B., & Antoniosi Filho, N. R. (2014). Comparative analysis of the fatty acid composition of microalgae obtained by different oil extraction methods and direct biomass transesterification. BioEnergy Research, (7): 1035-1044. https://doi.org/10.1007/s12155-014-9446-4

Tessarolli, L. P., Day, J. G., & Vieira, A. A. H. (2017). Establishment of a cryopreserved bionk for the culture collection of freshwater microalgae (CCMA-UFSCar), São Paulo, Brazil. Biota Neotropica, (2): 1-9. https://doi.org/10.1590/1676-0611-BN-2016-0299

Umamaheswari, J., & Shanthakumar, S. (2016). Efficacy of microalgae for industrial wastewater treatment: a review on operating conditions, treatment efficiency and biomass productivity. Reviews in Environmental Science and Bio/Technology, (15): 265-284. https://doi.org/10.1007/s11157-016-9397-7

West, J. A. (2005). Algal Culturing Techniques: Historical review of algal culturing techniques. Andersen RA, Elsevier Academic Press, 165-188.

Wynne, M. J., & Hallan, J. K. (2015). Reinstatement of Tetradesmus G. M. Smith (Sphaeropleales, Chlorophyta). Feddes Repertorium, (126): 83-86. https://doi.org/10.1002/fedr.201500021

Downloads

Published

21/11/2021

How to Cite

FERREIRA, G. L. da R.; VIEIRA, J. D. G. .; D’ALESSANDRO, E. B. . Cellular feasibility study of Acutodesmus obliquus. Research, Society and Development, [S. l.], v. 10, n. 15, p. e98101522372, 2021. DOI: 10.33448/rsd-v10i15.22372. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/22372. Acesso em: 6 jan. 2025.

Issue

Section

Agrarian and Biological Sciences