Influence of acidic and basic catalysis on the synthesis of silica xerogels for the adsorption of methylene blue in aqueous medium
DOI:
https://doi.org/10.33448/rsd-v10i15.22524Keywords:
Methylene blue; Adsorption; Silica xerogels; Sol-gel process.Abstract
In this study, two silica xerogels were synthesized by sol-gel method using an acidic aqueous solution and a basic aqueous solution as catalysts for each material, named as SiO2-A and SiO2-B, respectively. Dyes, such as methylene blue (MB), are common contaminants present in wastewater from textile industries and the search for or improvement of processes capable of reducing these damages by retention these pollutants is extremely important. These xerogels were used as adsorbent for removing methylene blue (MB) from aqueous solutions. Ultra-Violet visible spectroscopy was used to monitor the adsorption process. The porosity and morphology of these xerogels were studied by using N2 adsorption and desorption isotherms and scanning electron microscopy (SEM), respectively. The experimental data showed that the MB adsorption is higher at pH 9,0 for both xerogels, with a high performance for the SiO2-B xerogel. These results best fitted to Langmuir isotherm model, attaining values of maximum adsorption mass of 50,6 mg g-1 and 8,24 mg g-1 of MB for the SiO2-B and SiO2-A, respectively. The SEM images show that the SiO2-A has a smooth surface, while the SiO2 B has a rough morphology with agglomerates. The porosity data show these xerogels are mesoporous. Our experiments demonstrated that the SiO2-A and SiO2-B xerogels could be used in environmental applications to removal of water pollutants such as dyes.
References
Adamčíková, L., Pavlíková, K., & Ševčík, P. (2000). The decay of methylene blue in alkaline solution. In Reaction Kinetics and Catalysis Letters (Vol. 69, Issue 1, pp. 91–94). https://doi.org/10.1023/A:1005696926749
Ahmed, M. N., & Ram, R. N. (1992). Removal of basic dye from waste-water using silica as adsorbent. Environmental Pollution, 77(1), 79–86. https://doi.org/10.1016/0269-7491(92)90161-3
Airoldi, C., & De Farias, R. F. (2000). O uso de sílica gel organofuncionalizada como agente sequestrante para metais. Quimica Nova, 23(4), 496–503. https://doi.org/10.1590/S0100-40422000000400012
Airoldi, C., & De Farias, R. F. (2004). Alcóxidos como precursores na síntese de novos materiais através do processo sol-gel. Quimica Nova, 27(1), 84–88. https://doi.org/10.1590/s0100-40422004000100018
Alfaya, A. A. S., & Kubota, L. T. (2002). A utilização de materiais obtidos pelo processo de sol-gel na construção de biossensores. Quimica Nova, 25(5), 835–841. https://doi.org/10.1590/S0100-40422002000500020
Ayad, M. M., Abu El-Nasr, A., & Stejskal, J. (2012). Kinetics and isotherm studies of methylene blue adsorption onto polyaniline nanotubes base/silica composite. Journal of Industrial and Engineering Chemistry, 18(6), 1964–1969. https://doi.org/10.1016/j.jiec.2012.05.012
B.Colthup, N., H. Daly, L., & E. Wiberley, S. (1990). Introduction to Infrared and Raman Spectroscopy (Third Edit). Academic Press.
Barrett, E. P., Joyner, L. G., & Halenda, P. P. (1951). The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. Journal of the American Chemical Society, 73(1), 373–380. https://doi.org/10.1021/ja01145a126
Bongur, R., Le Nouen, D., Gaslain, F., Marichal, C., Lebeau, B., & Guarilloff, P. (2016). Red 33 dye co-encapsulated with cetyltrimethylammonium in mesoporous silica materials. Dyes and Pigments, 127, 1–8. https://doi.org/10.1016/j.dyepig.2015.12.006
Brinker, C. J., & Scherer, G. W. (1990). Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (First). Academic Press.
Bryans, T. R., Brawner, V. L., & Quitevis, E. L. (2000). Microstructure and porosity of silica xerogel monoliths prepared by the fast sol-gel method. Journal of Sol-Gel Science and Technology, 17(3), 211–217. https://doi.org/10.1023/A:1008711921746
Casagrande, C. A., & Repette, W. L. (2018). Monitoramento da hidrólise/condensação do tetraetoxisilano em solução com baixo teor alcoólico por análises de espectroscopia de infravermelho. Matéria (Rio de Janeiro), 23(4). https://doi.org/10.1590/s1517-707620180004.0571
Chueachot, R., Wongkhueng, S., Khankam, K., Lakrathok, A., Kaewnon, T., Naowanon, W. T., Amnuaypanich, S., & Nakhowong, R. (2018). Adsorption efficiency of methylene blue from aqueous solution with amine-functionalized mesoporous silica nanospheres by co-condensation biphasic synthesis: Adsorption condition and equilibrium studie. Materials Today: Proceedings, 5(6), 14079–14085. https://doi.org/10.1016/j.matpr.2018.02.066
Cloarec, J. P., Chevalier, C., Genest, J., Beauvais, J., Chamas, H., Chevolot, Y., Baron, T., & Souifi, A. (2016). PH driven addressing of silicon nanowires onto Si3N4/SiO2 micro-patterned surfaces. Nanotechnology, 27(29). https://doi.org/10.1088/0957-4484/27/29/295602
Da̧browski, A. (2001). Adsorption - From theory to practice. Advances in Colloid and Interface Science, 93(1–3), 135–224. https://doi.org/10.1016/S0001-8686(00)00082-8
de Farias, R. S., Buarque, H. L. de B., da Cruz, M. R., Cardoso, L. M. F., Gondim, T. de A., & de Paulo, V. R. (2018). Adsorption of congo red dye from aqueous solution onto amino-functionalized silica gel. Engenharia Sanitaria e Ambiental, 23(6), 1053–1060. https://doi.org/10.1590/s1413-41522018172982
DeOliveira, E., Neri, C. R., Serra, O. A., & Prado, A. G. S. (2007). Antenna effect in highly luminescent Eu3+ anchored in hexagonal mesoporous silica. Chemistry of Materials, 19(22), 5437–5442. https://doi.org/10.1021/cm701997y
Dorigon, L., Ruiz de Almeida da Frota, J. P., Kreutz, J. C., Mello Giona, R., Pereira Moisés, M., & Bail, A. (2017). Synthesis and characterization of mesoporous silica-coated magnetite containing cetyltrimethylammonium bromide and evaluation on the adsorption of sodium dodecylbenzenesulfonate. Applied Surface Science, 420, 954–962. https://doi.org/10.1016/j.apsusc.2017.05.249
Dudás, Z., Len, A., Ianăși, C., & Paladini, G. (2020). Structural modifications caused by the increasing MTES amount in hybrid MTES/TEOS-based silica xerogels. Materials Characterization, 167(April), 33–36. https://doi.org/10.1016/j.matchar.2020.110519
Ghosh, D., & Bhattacharyya, K. G. (2002). Adsorption of methylene blue on kaolinite. Applied Clay Science, 20(6), 295–300. https://doi.org/10.1080/01932699908943843
Greluk, M., & Hubicki, Z. (2010). Kinetics, isotherm and thermodynamic studies of Reactive Black 5 removal by acid acrylic resins. Chemical Engineering Journal, 162(3), 919–926. https://doi.org/10.1016/j.cej.2010.06.043
Hall, K. R., Eagleton, L. C., Acrivos, A., & Vermeulen, T. (1966). Pore- and solid-diffusion kinetics in fixed-bed adsorption under constant-pattern conditions. Industrial and Engineering Chemistry Fundamentals, 5(2), 212–223. https://doi.org/10.1021/i160018a011
Hameed, B. H., Din, A. T. M., & Ahmad, A. L. (2007). Adsorption of methylene blue onto bamboo-based activated carbon: Kinetics and equilibrium studies. Journal of Hazardous Materials, 141(3), 819–825. https://doi.org/10.1016/j.jhazmat.2006.07.049
Han, H., Wei, W., Jiang, Z., Lu, J., Zhu, J., & Xie, J. (2016). Removal of cationic dyes from aqueous solution by adsorption onto hydrophobic/hydrophilic silica aerogel. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 509, 539–549. https://doi.org/10.1016/j.colsurfa.2016.09.056
Hannachi, Y., & Hafidh, A. (2020). Preparation and characterization of novel bi-functionalized xerogel for removal of methylene blue and lead ions from aqueous solution in batch and fixed-bed modes: RSM optimization, kinetic and equilibrium studies. Journal of Saudi Chemical Society, 24(7), 505–519. https://doi.org/10.1016/j.jscs.2020.05.002
Heister, K. (2016). How accessible is the specific surface area of minerals? A comparative study with Al-containing minerals as model substances. Geoderma, 263, 8–15. https://doi.org/10.1016/j.geoderma.2015.09.001
Ho, Y. S. (2006). Isotherms for the sorption of lead onto peat: Comparison of linear and non-linear methods. Polish Journal of Environmental Studies, 15(1), 81–86.
Huang, C. H., Chang, K. P., Ou, H. De, Chiang, Y. C., & Wang, C. F. (2011). Adsorption of cationic dyes onto mesoporous silica. Microporous and Mesoporous Materials, 141(1–3), 102–109. https://doi.org/10.1016/j.micromeso.2010.11.002
Karim, A. H., Jalil, A. A., Triwahyono, S., Sidik, S. M., Kamarudin, N. H. N., Jusoh, R., Jusoh, N. W. C., & Hameed, B. H. (2012). Amino modified mesostructured silica nanoparticles for efficient adsorption of methylene blue. Journal of Colloid and Interface Science, 386(1), 307–314. https://doi.org/10.1016/j.jcis.2012.07.043
Katheresan, V., Kansedo, J., & Lau, S. Y. (2018). Efficiency of various recent wastewater dye removal methods: A review. Journal of Environmental Chemical Engineering, 6(4), 4676–4697. https://doi.org/10.1016/j.jece.2018.06.060
Khurana, I., Saxena, A., Bharti, Khurana, J. M., & Rai, P. K. (2017). Removal of Dyes Using Graphene-Based Composites: a Review. Water, Air, and Soil Pollution, 228(5). https://doi.org/10.1007/s11270-017-3361-1
Langmuir, I. (1918). The Adsorption of Gases on Plane Surfaces of Mica. Journal of the American Chemical Society, 40(9), 1361–1403. https://doi.org/10.1021/ja01269a066
Li, Y., Wang, S., Shen, Z., Li, X., Zhou, Q., Sun, Y., Wang, T., Liu, Y., & Gao, Q. (2020). Gradient Adsorption of Methylene Blue and Crystal Violet onto Compound Microporous Silica from Aqueous Medium. ACS Omega, 5(43), 28382–28392. https://doi.org/10.1021/acsomega.0c04437
Liu, G., Yang, R., & Li, M. (2010). Liquid adsorption of basic dye using silica aerogels with different textural properties. Journal of Non-Crystalline Solids, 356(4–5), 250–257. https://doi.org/10.1016/j.jnoncrysol.2009.11.019
Liu, J., Ma, S., & Zang, L. (2013). Preparation and characterization of ammonium-functionalized silica nanoparticle as a new adsorbent to remove methyl orange from aqueous solution. Applied Surface Science, 265, 393–398. https://doi.org/10.1016/j.apsusc.2012.11.019
M. Buckley, A., & Greenblatt, M. (1994). The Sol-Gel Preparation of Silica Gels. Journal of Chemical Education, 71(7), 599–602.
Mills, A., Hazafy, D., Parkinson, J., Tuttle, T., & Hutchings, M. G. (2011). Effect of alkali on methylene blue (C.I. Basic Blue 9) and other thiazine dyes. Dyes and Pigments, 88(2), 149–155. https://doi.org/10.1016/j.dyepig.2010.05.015
Mota, T. L. R., Gomes, A. L. M., Palhares, H. G., Nunes, E. H. M., & Houmard, M. (2019). Influence of the synthesis parameters on the mesoporous structure and adsorption behavior of silica xerogels fabricated by sol–gel technique. Journal of Sol-Gel Science and Technology, 92(3), 681–694. https://doi.org/10.1007/s10971-019-05131-y
Nascimento, R. F. do, Lima, A. C. A. de, Vidal, C. B., Melo, D. de Q., & Raulino, G. S. C. (2014). Adsorção: Aspectos teóricos e aplicações ambientais. In Imprensa Universitária da Universidade Federal do Ceará (UFC).
Nassar, E. J., Messaddeq, Y., & Ribeiro, S. J. L. (2002). INFLUÊNCIA DA CATÁLISE ÁCIDA E BÁSICA NA PREPARAÇÃO DA SÍLICA FUNCIONALIZADA PELO MÉTODO SOL-GEL. Química Nova, 25(1), 27–31.
Parida, S. K., Dash, S., Patel, S., & Mishra, B. K. (2006). Adsorption of organic molecules on silica surface. Advances in Colloid and Interface Science, 121(1–3), 77–110. https://doi.org/10.1016/j.cis.2006.05.028
Pavan, F. A., Dias, S. L. P., Lima, E. C., & Benvenutti, E. V. (2008). Removal of Congo red from aqueous solution by anilinepropylsilica xerogel. Dyes and Pigments, 76(1), 64–69. https://doi.org/10.1016/j.dyepig.2006.08.027
Price, P. M., Clark, J. H., & Macquarrie, D. J. (2008). Modi fi ed silicas for clean technology. Journal of the Chemical Society Dalton Transactions, 2, 101–110.
Rasalingam, S., Peng, R., & Koodali, R. T. (2013). An investigation into the effect of porosities on the adsorption ofrhodamine B using titania-silica mixed oxide xerogels. Journal of Environmental Management, 128, 530–539. https://doi.org/10.1016/j.jenvman.2013.06.014
Rocha, L. C., De Souza, A. L., Rodrigues Filho, U. P., Campana Filho, S. P., Sette, L. D., & Porto, A. L. M. (2012). Immobilization of marine fungi on silica gel, silica xerogel and chitosan for biocatalytic reduction of ketones. Journal of Molecular Catalysis B: Enzymatic. https://doi.org/10.1016/j.molcatb.2012.05.025
Roghanizad, A., Karimi Abdolmaleki, M., Ghoreishi, S. M., & Dinari, M. (2020). One-pot synthesis of functionalized mesoporous fibrous silica nanospheres for dye adsorption: Isotherm, kinetic, and thermodynamic studies. Journal of Molecular Liquids, 300, 112367. https://doi.org/10.1016/j.molliq.2019.112367
Saadi, R., Saadi, Z., Fazaeli, R., & Fard, N. E. (2015). Monolayer and multilayer adsorption isotherm models for sorption from aqueous media. Korean Journal of Chemical Engineering, 32(5), 787–799. https://doi.org/10.1007/s11814-015-0053-7
Senthilkumaar, S., Varadarajan, P. R., Porkodi, K., & Subbhuraam, C. V. (2005). Adsorption of methylene blue onto jute fiber carbon: Kinetics and equilibrium studies. Journal of Colloid and Interface Science, 284(1), 78–82. https://doi.org/10.1016/j.jcis.2004.09.027
SING, K. S. W., EVERETT, D. H., HAUL, R. A. W., MOSCOU, L., PIEROTTI, R. A., ROUQUEROL, J., & SIEMIENIEWSKA, T. (1985). REPORTING PHYSISORPTION DATA FOR GAS/SOLID SYSTEMS with Special Reference to the Determination of Surface Area and Porosity. Pure and Applied Chemistry, 57(4), 603–619.
Singh, L. P., Bhattacharyya, S. K., Kumar, R., Mishra, G., Sharma, U., Singh, G., & Ahalawat, S. (2014). Sol-Gel processing of silica nanoparticles and their applications. Advances in Colloid and Interface Science, 214, 17–37. https://doi.org/10.1016/j.cis.2014.10.007
Sun, L., Hu, S., Sun, H., Guo, H., Zhu, H., Liu, M., & Sun, H. (2015). Malachite green adsorption onto Fe3O4@SiO2-NH2: Isotherms, kinetic and process optimization. RSC Advances, 5(16), 11837–11844. https://doi.org/10.1039/c4ra13402h
Tan, X., Lu, L., Wang, L., & Zhang, J. (2015). Facile Synthesis of Bimodal Mesoporous Fe3O4@SiO2 Composite for Efficient Removal of Methylene Blue. European Journal of Inorganic Chemistry, 2015(18), 2928–2933. https://doi.org/10.1002/ejic.201500267
Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., & Sing, K. S. W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9–10), 1051–1069. https://doi.org/10.1515/pac-2014-1117
Tsamo, C., Kidwang, G. D., & Dahaina, D. C. (2020). Removal of Rhodamine B from aqueous solution using silica extracted from rice husk. SN Applied Sciences, 2(2), 1–13. https://doi.org/10.1007/s42452-020-2057-0
Usgodaarachchi, L., Thambiliyagodage, C., Wijesekera, R., & Bakker, M. G. (2021). Synthesis of mesoporous silica nanoparticles derived from rice husk and surface-controlled amine functionalization for efficient adsorption of methylene blue from aqueous solution. Current Research in Green and Sustainable Chemistry, 4(March), 100116. https://doi.org/10.1016/j.crgsc.2021.100116
Wang, J., & Guo, X. (2020). Adsorption isotherm models: Classification, physical meaning, application and solving method. Chemosphere, 258, 127279. https://doi.org/10.1016/j.chemosphere.2020.127279
Wu, Z., Ahn, I. S., Lee, C. H., Kim, J. H., Shul, Y. G., & Lee, K. (2004). Enhancing the organic dye adsorption on porous xerogels. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 240(1–3), 157–164. https://doi.org/10.1016/j.colsurfa.2004.04.045
Yaseen, D. A., & Scholz, M. (2019). Textile dye wastewater characteristics and constituents of synthetic effluents: a critical review. In International Journal of Environmental Science and Technology (Vol. 16, Issue 2). Springer Berlin Heidelberg. https://doi.org/10.1007/s13762-018-2130-z
Zhao, M., Tang, Z., & Liu, P. (2008). Removal of methylene blue from aqueous solution with silica nano-sheets derived from vermiculite. Journal of Hazardous Materials, 158(1), 43–51. https://doi.org/10.1016/j.jhazmat.2008.01.031
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Pedro Henrique de Paulo Olívio; Gabriel Vinicius Buzato; Adriano Lopes de Souza
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.