Different aspects of the immune response in COVID-19

Authors

DOI:

https://doi.org/10.33448/rsd-v10i14.22531

Keywords:

Covid-19 immunology; Acquired immune response; Cytokine storm; Viral infection.

Abstract

During the COVID-19 pandemic, infection by the SARS-CoV-2 virus, which causes severe respiratory syndrome. Unlike other viral infections, its response to inflammation diverges from the usual, thus becoming an enigma to understand the cellular function during the immune response. Thus, many studies have started to elucidate the main cells, TCD4, TCD8, B lymphocytes and antibodies. This review aims to search in articles and scientific research related to the subject, via databases such as Google Scholar, Elsevier, PubMed, Medline, The New England Journal of Medicine and Scielo, texts related to the general characteristics of COVID-19 and the immunology related to infection by the SARS-CoV-2 virus. Although more studies are needed, a picture has begun to emerge that reveals that TCD4 + cells, TCD8 + cells and neutralizing antibodies, contribute to the control of SARS-CoV-2 in both non-hospitalized and hospitalized cases of COVID-19. The specific functions and kinetics of these adaptive immune responses are discussed, as well as their interaction with innate immunity and implications for COVID-19 vaccines and immunological memory against reinfection. Thus, we emphasize the importance of maintaining the care related to hygiene and protection, following the recommendations of world health agencies.

References

Aid, M., Busman-Sahay, K., Vidal, S. J., Maliga, Z., Bondoc, S., Starke, C., Terry, M., Jacobson, C. A., Wrijil, L., Ducat, S., Brook, O. R., Miller, A. D., Porto, M., Pellegrini, K. L., Pino, M., Hoang, T. N., Chandrashekar, A., Patel, S., Stephenson, K., & Bosinger, S. E. (2020). Vascular Disease and Thrombosis in SARS-CoV-2-Infected Rhesus Macaques. Cell, 183(5), 1354-1366.e13. https://doi.org/10.1016/j.cell.2020.10.005

Aoshi, T., Koyama, S., Kobiyama, K., Akira, S., & Ishii, K. J. (2011). Innate and adaptive immune responses to viral infection and vaccination. Current Opinion in Virology, 1(4), 226–232. https://doi.org/10.1016/j.coviro.2011.07.002

Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1866(10), 165878.

Brandão, S. C. S., Godoi, E. T. A. M., Ramos, J. D. O. X., Melo, L. M. M. P. D., & Sarinho, E. S. C. (2020). COVID-19 grave: entenda o papel da imunidade, do endotélio e da coagulação na prática clínica. Jornal Vascular Brasileiro, 19

Ceravolo, M. G., Arienti, C., De Sire, A., Andrenelli, E., Negrini, F., Lazzarini, S., Patrini, M., Negrini, S., & International Multiprofessional Steering Committee of Cochrane Rehabilitation REH-COVER action. (2020). Rehabilitation and Covid-19: the Cochrane Rehabilitation 2020 rapid living systematic review. European Journal of Physical and Rehabilitation Medicine. https://doi.org/10.23736/S1973-9087.20.06501-6

Gleichmann, N. (2020). Innate Vs Adaptive Immunity. From Technology Networks. https://www.technologynetworks.com/im munology/articles/innate-vs-adaptive-immunity-335116

Gonçalves, Jonas Rodrigo (2021). Manual de artigo de revisão de literatura. / Jonas Rodrigo Gonçalves. - Brasília: Instituto Processus, (2021). (Coleção Trabalho de Curso, v. II). 3a edição 105 fls. Artigo de revisão. 2. ABNT. 3. Metodologia. II. Título.

Grifoni, A., Weiskopf, D., Ramirez, S. I., Mateus, J., Dan, J. M., Moderbacher, C. R., Rawlings, S. A., Sutherland, A., Premkumar, L., Jadi, R. S., Marrama, D., de Silva, A. M., Frazier, A., Carlin, A., Greenbaum, J. A., Peters, B., Krammer, F., Smith, D. M., Crotty, S., & Sette, A. (2020). Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell, 181(7). https://doi.org/10.1016/j.cell.2020.05.015

Gudbjartsson, D. F., Norddahl, G. L., Melsted, P., Gunnarsdottir, K., Holm, H., Eythorsson, E., Arnthorsson, A. O., Helgason, D., Bjarnadottir, K., Ingvarsson, R. F., Thorsteinsdottir, B., Kristjansdottir, S., Birgisdottir, K., Kristinsdottir, A. M., Sigurdsson, M. I., Arnadottir, G. A., Ivarsdottir, E. V., Andresdottir, M., Jonsson, F., & Agustsdottir, A. B. (2020). Humoral Immune Response to SARS-CoV-2 in Iceland. New England Journal of Medicine. https://doi.org/10.1056/nejmoa2026116

Lynch, K. L., Whitman, J. D., Lacanienta, N. P., Beckerdite, E. W., Kastner, S. A., Shy, B. R., Goldgof, G. M., Levine, A. G., Bapat, S. P., Stramer, S. L., Esensten, J. H., Hightower, A. W., Bern, C., & Wu, A. H. B. (2020). Magnitude and kinetics of anti-SARS-CoV-2 antibody responses and their relationship to disease severity. Clinical Infectious Diseases. https://doi.org/10.1093/cid/ciaa979

Mahmudpour, M., Roozbeh, J., Keshavarz, M., Farrokhi, S., & Nabipour, I. (2020). COVID-19 cytokine storm: The anger of inflammation. Cytokine, 155151. https://doi.org/10.1016/j.cyto.2020.155151

Meckiff, B. J., Ramírez-Suástegui, C., Fajardo, V., Chee, S. J., Kusnadi, A., Simon, H., Eschweiler, S., Grifoni, A., Pelosi, E. & Weiskopf, D. (2020). Desequilíbrio de SARS-CoV-CoV-2- regulatório e citotóxico células T CD4 + reativas em COVID-19. Célula. 183: 1340–1353.e16

Naqvi, A., Fatima, K., Mohammad, T., Fatima, U., Singh, I. K., Singh, A., Atif, S. M., Hariprasad, G., Hasan, G. M., & Hassan, M. I. (2020). Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: Structural genomics approach. Biochimica et biophysica acta. Molecular basis of disease, 1866(10), 165878. https://doi.org/10.1016/j.bbadis.2020.165878

Ng, K. W., Faulkner, N.., Cornish, G. H., Rosa, A., Harvey, R., Hussain, S., Ulferts, R., Earl, C., Wrobel, A. G. & Benton, D. J. (2020). Preexisting and de novo humoral immunity to SARS-CoV-2 in humanos. Ciência. 370:1339–43

Oran, D. P., & Topol, E. J. (2020). Prevalence of Asymptomatic SARS-CoV-2 Infection. Annals of Internal Medicine. https://doi.org/10.7326/m20-3012

Silva, César Augusto et al. Imunopatogênese no desenvolvimento da COVID-19. 102 p

V’kovski, P., Kratzel, A., Steiner, S., Stalder, H., & Thiel, V. (2020). Coronavirus biology and replication: implications for SARS-CoV-2. Nature Reviews Microbiology, 19, 1–16. https://doi.org/10.1038/s41579-020-00468-6

Varnaitė 2020. (2020). Covid-19.Cochrane.org. https://covid-19.cochrane.org/studies/crs-14525219

Wajnberg, A., Amanat, F., Firpo, A., Altman, D. R., Bailey, M. J., Mansour, M., McMahon, M., Meade, P., Mendu, D. R., Muellers, K., Stadlbauer, D., Stone, K., Strohmeier, S., Simon, V., Aberg, J., Reich, D. L., Krammer, F., & Cordon-Cardo, C. (2020). Robust neutralizing antibodies to SARS-CoV-2 infection persist for months. Science, 370(6521), 1227–1230. https://doi.org/10.1126/science.abd7728

World Health Organization. (2021). Coronavirus Disease (COVID-19). World Health Organization. https://www.who.int/health-topics/coronavirus#tab=tab_1

Wu, T. (2020). Persistence of humoral and cellular immune response after SARS-CoV-2 infection: opportunities and challenges. Frontiers of Medicine. https://doi.org/10.1007/s11684-020-0823-4

Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W., Lu, R., Niu, P., Zhan, F., Ma, X., Wang, D., Xu, W., Wu, G., Gao, G. F., & Tan, W. (2020). A Novel Coronavirus from Patients with Pneumonia in China, 2019. New England Journal of Medicine, 382(8). https://doi.org/10.1056/nejmoa2001017

Published

08/11/2021

How to Cite

SANTOS, A. A. R. .; PAULA, K. K. O. de .; MARASCO, B. F. D. .; CASTILHO, D. G. Different aspects of the immune response in COVID-19. Research, Society and Development, [S. l.], v. 10, n. 14, p. e423101422531, 2021. DOI: 10.33448/rsd-v10i14.22531. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/22531. Acesso em: 14 jun. 2024.

Issue

Section

Education Sciences