Identification of expansive and collapsible soils in northeastern Brazil from Artificial Neural Networks generated in Pernambuco
DOI:
https://doi.org/10.33448/rsd-v10i15.22541Keywords:
Expansive Soils; Collapsible Soils; Artificial Neural Networks; Classification equation.Abstract
Collapsible and expansive soils are problematic in Civil Engineering, causing pathologies in buildings due to the variation in volume with the change in humidity. The identification of these soils in the design phase is important. The paper aims to develop an Artificial Neural Network architecture trained with soils from Pernambuco, to identify expansive and collapsible soils, and expand its application to soils from other states in Northeastern Brazil. Developed from 87 samples, divided between training (53 samples), selection (17 samples) and test (17 samples) groups, according to 4 input variables, percentage of sand, percentage of clay, plasticity and activity indices. The best network architecture consists of 4 neurons at the input and 1 at the output. For the blind validation of the model, the network was applied to 45 samples of collapsible and expansive soils from other Northeastern states. The performance analysis of the classification accuracy of the network with data from Pernambuco showed an accuracy rate of 76.5% and in the validation in the other Northeastern states, pattern recognition was even higher, reaching an accuracy of 91.1%, demonstrating capacity capturing trends in soil surface movement and aiding in problem solving.
References
Amorim, S. F. (2012). Estudio comparativo de métodos para la evaluación de la susceptibilidad del terreno a la formación de deslizamientos superficiales: Aplicación al Pirineo Oriental. Tesis Doctoral, Universitat Politecnica de Catalunya. Barcelona, Espanã.
Ashayeri, I., & Yasrebi, S. (2009). Free-swell and swelling pressure of unsaturated compacted clays; experiments and neural networks modeling. Geotechnical and Geological Engineering. 27 (1), 137-153.
Bandeira, A. P. N., Souza Neto, J. B., & Rolim, J. I. D. (2017). Recalque por colapso do solo e suas manifestações Patológicas. In: XIII Congresso Internacional sobre Patologia e Reabilitação de Estruturas, 303-318. Crato, Brasil.
Basma, A. A., Barakat, S. A., & Omar, M. (2003). Modeling time dependent swell of clays using sequential artificial neural networks. Environmental and Engineering Geoscience, 9 (3), 279-288.
Chitero, J. G. M., Bonini Neto, A., Bonini, C. dos S. B., Heinrichs, R., Soares Filho, C. V., Mateus, G. P., Bisi, B. S., Costa, N. R., Piazentin, J. C., Meirelles, G. C., & Gabriel Filho, L. R. A. (2020). Analysis of the physical recovery of degraded soils via Artificial Neural Networks using a graphical interface. Research, Society and Development, 9 (7), p. e257973719. https://doi.org/10.33448/rsd-v9i7.3719.
Chen, F. H. (1975). Fundation on Expansive Soils. Amsterdam: Elsevier.
Daksanamurty, V., & Raman, V. (1973). A simple method of identifying an expansive soil. Soils and Foundation, 13(1), 97-104.
Doris, J. J., Rizzo, M. M., & Dewoolkar, M. M. (2008). Forecasting vertical ground surface movement from shrinking/swelling soils with artificial neural networks. Int. J. Numer. Anal. Meth. Geomech, 32, 1229–1245. https://doi.org/10.1002/nag.666.
Driscoll, R., & Crilly, M. (2000). Subsidence damage to domestic buildings: Lessons learned and questions asked. London: Building Research Establishment.
Ferreira, S. R. M. (1990). Banco de Dados de Solos Especiais - Colapsíveis do Estado de Pernambuco. In: IX Congresso Brasileiro de Mecânica dos Solos e Engenharia de Fundações, 2, 81-86. Salvador, Brasil.
Paiva, S. C., Freitas, M. L. A. A., Barbosa, R., Rego, W. A., & Ferreira, S. R. M. F. (2012). Estabilização de Solos Expansivos de Cabrobó, Paulista e Suape/PE com Cal. In: XVI Congresso Brasileiro de Mecânica dos Solos e Engenharia Geotecnica, p.264. Porto de Galinhas, Brasil.
Ferreira, S. R. M., & Ferreira, M. G. V. X. (2009). Mudanças de volume devido à variação de teor de umidade em um Vertisolo no Semi-Árido de Pernambuco. Revista Brasileira de Ciência do Solo (Impresso), 33, 779-791.
Gitirana Junior, G. F. N., Camapum de Carvalho, J., Ferreira, S. R. M., & Mascarenha, M. M. A. (2012). O comportamento de solos não saturados submetidos à infiltração. In: Carvalho, J. C., Gitirana Junior, G. F. N., & Carvalho, E. T. L. (Org). Tópicos sobre infiltração: teoria e prática aplicadas a solos tropicais, 157-180. Brasília, Brasil: Faculdade de Tecnologia.
Haykin, S. (1994). Neural Networks: A Comprehensive Foundation. New York: Prentice-Hall.
Ikizler, S. B., Aytekin, M., Vekli, M., & Kocabas, F. (2010). Prediction of swelling pressures of expansive soils using artificial neural networks. Advances in Engineering Software, 41(4), 647-655.
Jucá, J. F. T., Gusmão Filho, J. A., & Justino da Silva, J. M. (1992). Laboratory and field tests on an expansive soil in Brazil. In: 7th International Conference on Expansive Soils, 1, 337-342. Dallas, Texas.
Merouane, F. Z., & Mamoune, S. M. (2018). Prediction of Swelling Parameters of Two Clayey Soils from Algeria Using Artificial Neural Networks. Mathematical Modelling in Civil Engineering, 14(3), 11-26. https://doi.org/10.2478/mmce-2018-0008.
Moosavi, M., Yazdanpanah, M. J., & Doostmohammadi, R. (2006). Modeling the cyclic swelling pressure of mudrock using artificial neural networks. Eng. Geol., 87, 178–194.
Nakashima, C. H., Saito, L. A., & Hella, M. (2014). Análise da estabilização de solo expansivo em plataforma ferroviária. Trabalho de Conclusão de Curso (Graduação), Universidade Tecnológica Federal do Paraná. Curitiba, Brasil.
Nelson, J. D., & Miller, D. J. (1992). Expansive soils: problems and practice in foundation and pavement engineering. New York: John Wiley & Sons.
Paiva, S. C., Assis, M. A. A., Ferreira, M. G. V. X., & Ferreira, S. R. M. (2016). Propriedades geotécnicas de um solo expansivo tratado com cal. Revista Matéria, 21(2), 437-440.
Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. [eBook]. Santa Maria. Ed. UAB / NTE / UFSM. https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1.
Pessoa, A. D., Sousa, G. C. L., Araujo, R. C., & Anjos, G. J. M. (2021). Artificial neural network model for predicting load capacity of driven piles. Research, Society and Development, 10 (1), p. e12210111526. https://doi.org/10.33448/rsd-v10i1.11526.
Prechelt, L. (1997). Investigation of the CasCor Family of Learning Algorithms. Neural Netw, 10(5), 885-896. https://doi.org/10.1016/S0893-6080(96)00115-3.
Rodrigues, R. A., & Vilar, O. M. (2013). Colapso de solo desencadeado pela elevação do nível d’água. Revista Nacional de Gerenciamento de Cidades, 1(6), 13-27.
Seed, H. B., Woodward, D. J., & Lundgren, R. (1962). Prediction for compacted clays. Journal soil machanics and Fundations division, 88(3), 53-87.
Simmes, P. R. M., & Costa Filho, L. M. (1981). Características mineralógicas de solos expansivos do Recôncavo Baiano. In: Simpósio Brasileiro de Solos Tropicais, 569-588. Rio de Janeiro, Brasil.
Simões de Oliveira, A. G. S., Jesus, A. C., & Miranda, S. B. (2006). Estudo geológico geotécnico dos solos expansivos da região do Recôncavo Baiano. In: Simpósio brasileiro de jovens geotécnicos, 2. Nova Friburgo, Brasil.
Skempton, A. W. (1953). The colloidal activity of clays. In: Proceedings of the International Conference on Soil Mechanics on Foundation Engeneering, 1(3), 587-595. London, England.
Sobral, H. S. (1956). Contribuição ao estudo de Massapê como solo para construção. Tese para Cátedra de Materiais de Construção, Universidade Federal da Bahia, Escola de Belas Artes. Salvador, Brasil.
Suleiman, G. K. A., Tapahuasco, W. F. C., & Neto, R. G. S. (2013). A Utilização da Cal em Forma de Pasta como Agente Estabilizante em Solos Oriundos da Cidade de Alegrete/RS. In: VII Seminário de Engenharia geotécnica do Rio Grande de Sul, 74-80. Santa Maria, Brasil.
Teixeira, C. Z. (1998). Solos Colapsíveis: Um Problema Para a Engenharia de Fundações. In: 27º Congresso Brasileiro de Engenharia Agrícola. Poços de Caldas, Brasil.
Van der Merve, D. H. (1964). The Prediction of heave from the plasticity index and percentage clay fraction of soils: The Civil Engeneer. South African Institute of Civil Engineers, 6, 103-107.
Vargas, M. (1981). Introdução à mecânica dos solos. São Paulo: McGraw-Hill do Brasil.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Maria Julia de Oliveira Holanda; Silvio Romero de Melo Ferreira; Samuel Franca Amorim; Jesce John Silva Borges; Larissa Ferreira da Silva
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.