Analysis of scientific evidence on the effectiveness of immunomodulation in cancer: a systematic review
DOI:
https://doi.org/10.33448/rsd-v11i9.22721Keywords:
Immunomodulation; Efficacy; Cancer.Abstract
Objective: To analyze the scientific evidence from studies on the effectiveness of immunomodulation in cancer. Methodology: This is a systematic review that searched for studies in the respective databases such as Pubmed, Scopus, Cinahl, Web of Science, and The Cochrane Data Base, using descriptors in English, selected in the Medical Subject Headings- MeSH. Soon after cataloging, the studies were analyzed through the Consolidated Standards of Reporting Trials-CONSORT, and Strengthening the Reporting of Observational Studies in Epidemiology (STROBE), the study sample consisted of nine articles. Results: Analysis of the studies reveals that immunomodulators have an average efficacy rate of 56% for some neoplasms. It was also observed that some substances showed good efficacy in the immunomodulation axis, such as Vitamin D, which decreases the relative risk for colon, breast, and prostate cancer. Immunomodulation was successful in increasing the survival of patients with endocrine (52%) and dermatological (45%) cancers who had low-grade (57%) immunity-related adverse events (irAE). Conclusion: Immunomodulatory therapy is evidenced as an advance in cancer therapy for presenting promising results, showing effectiveness for certain neoplasms.
References
Ascierto, P. A., Brugarolas, J., Buonaguro, L., Butterfield, L. H., Carbone, D., Daniele, B., Ferris, R., Fox, B. A., Galon, J., Gridelli, C., Kaufman, H. L., Klebanoff, C. A., Melero, I., Nathan, P., Paulos, C. M., Ruella, M., Sullivan, R., Zarour, H., & Puzanov, I. (2018). Perspectives in immunotherapy: meeting report from the Immunotherapy Bridge (2017). Journal for immunotherapy of cancer, 6(1), 69.
Chen, G. et al (2018). Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature 560, 382–386.
Davda, J., Declerck, P., Hu-Lieskovan, S., Hickling, T. P., Jacobs, I. A., Chou, J., Salek-Ardakani, S., &Kraynov, E. (2019). Immunogenicity of immunomodulatory, antibody-based, oncology therapeutics. Journal for immunotherapy of cancer, 7(1), 105.
De Mattos-Arruda, L., Blanco-Heredia, J., Aguilar-Gurrieri, C., Carrillo, J., & Blanco, J. (2020). New emerging targets in cancer immunotherapy: the role of neoantigens. ESMO open, 4(Suppl 3), e000684.
Di Trolio, R., Simeone, E., Di Lorenzo, G., Buonerba, C., & Ascierto, P. A. (2015). The use of interferon in melanoma patients: a systematic review. Cytokine & growth factor reviews, 26(2), 203–212.
Dunn, J., & Rao, S. (2017). Epigenetics and immunotherapy: The current state of play. Molecular immunology, 87, 227–239.
Esfahani, K., Roudaia, L., Buhlaiga, N., Del Rincon, S. V., Papneja, N., & Miller, W. H., Jr (2020). A review of cancer immunotherapy: from the past, to the present, to the future. Current oncology (Toronto, Ont.), 27(Suppl 2), S87–S97.
Fujimoto, D., Yoshioka, H., Kataoka, Y., Morimoto, T., Kim, Y. H., Tomii, K., Ishida, T., Hirabayashi, M., Hara, S., Ishitoko, M., Fukuda, Y., Hwang, M. H., Sakai, N., Fukui, M., Nakaji, H., Morita, M., Mio, T., Yasuda, T., Sugita, T., & Hirai, T. (2018). Efficacy and safety of nivolumab in previously treated patients with non-small cell lung cancer: A multicenter retrospective cohort study. Lung cancer (Amsterdam, Netherlands), 119, 14–20.
Hodi, F. S., Chiarion-Sileni, V., Gonzalez, R., Grob, J. J., Rutkowski, P., Cowey, C. L., Lao, C. D., Schadendorf, D., Wagstaff, J., Dummer, R., Ferrucci, P. F., Smylie, M., Hill, A., Hogg, D., Marquez-Rodas, I., Jiang, J., Rizzo, J., Larkin, J., &Wolchok, J. D. (2018). Nivolumab plus ipilimumab or nivolumab alone versus ipilimumab alone in advanced melanoma (CheckMate 067): 4-year outcomes of a multicentre, randomised, phase 3 trial. The Lancet. Oncology, 19(11), 1480–1492.
Kottschade L. A. (2019). The Future of Immunotherapy in the Treatment of Cancer. Seminars in oncology nursing, 35(5), 150934.
Lee, S., & Margolin, K. (2011). Cytokines in cancer immunotherapy. Cancers, 3(4), 3856–3893.
Lin, H. et al. (2018). Host expression of PD-L1 determines efficacy of PD-L1 pathway blockade-mediated tumor regression. J. Clin. Invest. 128, 805–815.
O'Donnell, J. S., Teng, M., & Smyth, M. J. (2019). Cancer immunoediting and resistance to T cell-based immunotherapy. Naturereviews. Clinicaloncology, 16(3), 151–167.
Reyes, S. J., González, K. B., Rodríguez, C., Navarrete-Muñoz, C., Salazar, A. P., Villagra, A., Caglevic, C., & Hepp, M. I. (2020). Imunoterapia do câncer: uma atualização. Revista médica de Chile, 148 (7), 970-982.
Rota, G. et al (2018). Shp-2 is dispensable for establishing T cell exhaustion and for PD-1 signaling in vivo. Cell Rep. 23, 39–49.
Scharovsky, O. Graciela, Matar, Pablo, Rozados, Viviana R., Rico, María J., ZacaríasFluck, Mariano F., Mainetti, Leandro E., Fernández Zenobi, M. Virginia, Roggero, Eduardo A., Gervasoni, Silvia I., Rossa, Ana, Perroud, Herman A., Sánchez, Andrea M., Celoria, Guillermo C., & Font, María T. (2012). Inmunomodulación y antiangiogénesis en la terapéutica oncológica: De la investigación básica a la clínica. Medicina, 72(1), 47-57.
Sugiura, D. et al (2019). Restriction of PD-1 function by cis-PD-L1/CD80 interactions is required for optimal T cell responses. Science 364, 558–566.
Teixeira, H., Dias. L., Menão. T., Oliveira. E. (2019). Immune checkpoint proteins as new target for cancer immunotherapy: literature review. HU rev. 45(3):325-333.
Wang, D. Y., Salem, J. E., Cohen, J. V., Chandra, S., Menzer, C., Ye, F., Zhao, S., Das, S., Beckermann, K. E., Ha, L., Rathmell, W. K., Ancell, K. K., Balko, J. M., Bowman, C., Davis, E. J., Chism, D. D., Horn, L., Long, G. V., Carlino, M. S., Lebrun-Vignes, B., & Johnson, D. B. (2018). Fatal Toxic Effects Associated With Immune Checkpoint Inhibitors: A Systematic Review and Meta-analysis. JAMA oncology, 4(12), 1721–1728.
Zhou, X., Yao, Z., Yang, H., Liang, N., Zhang, X., & Zhang, F. (2020). Are immune-related adverse events associated with the efficacy of immune checkpoint inhibitors in patients with cancer? A systematic review and meta-analysis. BMC medicine, 18(1), 87.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Vinicius Lino de Souza Neto; Giovanna Pereira Holanda ; Joane Caroline Menck; Breno Amin De Lima Silveira ; Daniela Parra Serafim; Victoria Carolini Mendes; Eduarda Cardoso Franco ; Hugo Justino Branda ; Andrezza Alves Vasconcelos Teixeira; Pedro Henrique de Freitas Cassoli ; Bárbara Lima Guerra; Marco Túlio Moraes da Costa Filho
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.