Can turbid water and refuges with aquatic macrophytes increase the survival and growth of Brycon amazonicus larvae?

Authors

DOI:

https://doi.org/10.33448/rsd-v10i15.22737

Keywords:

Clayey water; Green water; Larviculture; Matrinxã; Performance.

Abstract

The productivity of aquatic organisms and higher concentration of suspended solids that occur in areas flooded by Whitewater Rivers and the presence of aquatic macrophytes are conducive to the initial development of matrinxã (Brycon amazonicus). The objective of this study was to evaluate whether turbid waters and refuges with aquatic macrophytes improve the survival and growth of the larvae of Brycon amazonicus, a species of great interest in Amazonian fish farming. For this, two experiments were conducted using a completely randomized design and with four replicas per treatment up to 120 hours after hatching (HAH), In experiment I: Brycon amazonicus larvae at 24 HAH were subjected to three treatments with different types of water: clear water (CW); clayey water (AW) and green water (GW). Experiment II: larvae with 24 HAH were maintained in clear water (CW); clear water with refuge (CWR); green water (GW); green water with refuge (GWR); clayey water (AW) and clayey water with refuge (AWR). Experiment I showed that clayey water, followed by green water, increased the survival of larvae (73.92 and 54.32%). Growth was best in larvae maintained in green water. In experiment II, the use of aquatic macrophytes did not influence the survival and growth of the larvae. Thus, we suggest the use of turbid (clayey and green) waters without refuge to increase the survival and growth of Brycon amazonicus larvae.

References

Abrahams, M., & Kattenfeld, M. (1997). The role of turbidity as a constraint on predator-prey interactions in aquatic environments. Behavioral Ecology and Sociobiology, 40,169–174. https://doi.org/10.1007/s002650050330.

Alsaqufi, A., Mathew, R., Alkhamis, Y., Rahman, M.M., & Pathiri, M. (2020). Influence of Photoperiod and Shelter on Some Phenotypic Traits in African Catfish (Clarias gariepinus Burchell, 1822) larvae. Pakistan journal of zoology. https://dx.doi.org/10.17582/journal.pjz/20200507220534.

Araújo-Lima, C. A. R. M., & Oliveira, E.C. (1998). Transport of larval fish in the Amazon. Journal of Fish Biology, 53, 297–306. doi.org/10.1111/j.1095-8649.1998.tb01033.x.

Atencio-García, V., Zaniboni-Filho, E., Pardo-Carrasco, S., & Arias-Castellanos, A. (2003). Influência da primeira alimentação na larvicultura e alevinagem de yamú Brycon siebenthalae (Characidae). Acta Scientiarum: Animal Science, 25, 61-72. https://doi.org/10.4025/actascianimsci.v25i1.2092.

Azevedo, R.P. (2006). Uso de água subterrânea em sistema de abastecimento público de comunidades na várzea da Amazônia central. Acta amazônica, 36, 313 – 320. https://doi.org/10.1590/S0044-59672006000300004.

Bernardino, G., Senhorini, J. A., Fontes, N. A., Bock, C. L., & Mendonça, J. O. J. (1993). Propagação artificial da matrinxã, Brycon cephalus. Boletim Técnico do CEPTA, 6, 1–9.

Bittencourt, S.C. S., Zacardi, D.M., Monteiro, T., Nakayama., & Queiroz, H.L. (2020). Juvenis de peixes associados à macrófitas aquáticas em ambientes de várzea na Amazônia Central, Brasil. Biota Amazônia, 10, 38-45. http://dx.doi.org/10. 18561/2179-5746/biotaamazonia.

Boehlert, GW., & Morgan, JB. (1985). Turbidity aprimora as habilidades de alimentação do arenque larval do Pacífico, Clupea harengus pallasi. Hydrobiologia, 123, 161-170. https://doi.org/10.1007/BF00018978.

Botelho, J. M. & Cruz. V. A. G. (2013). Metodologia científica. São Paulo: Pearson Education do Brasil.

Cajado, R. A., Oliveira, L. S., Oliveira, C. C., Ponte, S. C. S., Bittencourt, S. C. S., Queiroz, H. L., & Zacardi, D. M. (2018). Distribuição de larvas de Brycon amazonicus (Pisces: Bryconidae) no entorno da Reserva de Desenvolvimento Sustentável Mamirauá: base ecológica para manejo. Revista Ibero Americana de Ciências Ambientais, 9, 78-87. http://doi.org/10. 6008/CBPC2179- 6858.2018.006.0010.

Carvalho, T. B., Souza, E. C. M., Silva, J. P., & Villacorta - Correa, M. A. (2018). Effect of body size heterogeneity on the aggressive behavior of larvae of matrinxã, Brycon amazonicus (Characiformes, Bryconidae). Acta Amazonica, 48, 304-310. https://doi.org/10.1590/1809-4392201800541.

Dias, D. C., Corrêa, C. F., Leonardo, A. F. G., Tachibana, L., Romagosa, E., & Ranzani‐Paiva, M. J. T. (2011). Probiótico na larvicultura de matrinxã, Brycon amazonicus. Acta Scientiarum, 33, 365–368. https://doi. org/10.4025/actascianimsci.v33i4.11764.

Eiane, K., Aksnes, DL., Bagøien, E., & Kaartvedt, S. (1999). Fish or jellies - a question of visibility? Limnology and Oceanography, 44, 1352 - 1357. https://doi.org/10.4319/lo.1999.44.5.1352.

Engstrom-Ost, J., Karjalainen, M., & Viitasalo, M. (2006). Feeding and Refuge Use by Small Fish in the Presence of Cyanobacteria Blooms. Environmental Biology of Fishes, 76, 109-117. https://doi.org/10.1007/s10641-006-9013-8.

Fachin, O. (2006). Fundamentos de metodologia. (5a ed.), Saraiva.

Feiden, A., Hayashi, C., Boscolo, W.R., & Reidel, A. (2006). Desenvolvimento de larvas de Steindachneridion sp. em diferentes condições de refúgio e luminosidade. Pesquisa Agropecuária, 41, 133-137. https://doi.org/10.1590/ S0100-204X2006000100018.

Franke, S., Brüning, A., Hölker, F., & Kloas, W. (2013). Study of biological action of light on fish. Journal of Light and Visual Environment, 37, 194–203. https://doi.org/10.2150/jlve.IEIJ130000518.

Gomes, L.C., Baldisserotto, B, B., & Senhorini, J.A. (2000). Effect of stocking densityon water quality, survival, and growth of larvae of the matrinxã, Brycon cephalus Characidae, in ponds. Aquaculture, 183, 73-81.

Gotceitas, V. (1990). Variation in plant stem density and its effects on foraging success of juvenile bluegill sunfish. Environmental Biology of Fishes, 27, 63 -70. https://doi.org/10.1007/BF00004905.

Gregory, R.S., & Northcote, TC. (1993). Surface, planktonic, and benthic foraging by juvenile chinook salmon (Oncorhynchus tshawytscha) in turbid laboratory conditions. Canadian Journal of Fisheries and Aquatic Sciences, 50, 233–240. https://doi.org/10.1139/f93-026.

He, J., Shi, H., Xu, W., & Su, Z. (2020). Research progress on the cannibalistic behavior of Aquatic Animals and The Screening of Cannibalism-Preventing Shelters (Review). Israeli Journal of Aquaculture - Bamidgeh, 72, 1-9. https://doi.org/10.46989/001c.21014.

Hecht, T., & Pienaar, A.G. (1993). A review of cannibalism and its implications in fish larviculture. Journal of the World Aquaculture Society, 24, 246-261. https://doi.org/10.1111/j.1749-7345.1993.tb00014.x.

Howell, B.R., Day, O.J., Ellis, T., & Baynes, S.M. (1998). Early life stages of farmed fish. In: Black, K., & Pickering, A (Ed.), Biology of farmed fish. Sheffield (pp.27-66). England: Sheffield Academic Press.

Jobling, M. (1994), Fish bionergetics. London: Chapman e Hall.

Jomori, R. K., Luz, R. K., Takata, R., Fabregat, T. E. H. P., & Portella, M. (2013). Água levemente salinizada aumenta a eficiência da larvicultura de peixes neotropicais. Pesquisa Agropecuária Brasileira, 48, 809–815. https://doi.org/10.1590/S0100-204X201300080000.

Junk, W. J. (1983). As águas da região Amazônica. In: SALATI, Eneas et al. Amazônia: desenvolvimento, integração e ecologia (pp.54-55). São Paulo: Brasiliense.

Le Cren, E. D. (1951). The length-weight relationship and seasonal cycle in gonadal weight condition in the perch Perca fluviatilis. J. An. Ecol., 20(2): 201-19.

Leite, R.G.; Araújo-Lima, C.A.R.M. (2002) Feeding of the Brycon cephalus, Triportheus elongatus and Semaprochilodus insignis (Osteichthyes, Characiformes) larvae in Solimões/Amazonas River and floodplain areas. Acta Amazonica. 32, 129-147. https://doi.org/10.1590/1809-43922002323515.

Leite, R.G.A. (2004). A alimentação de juvenis de matrinxã, Brycon amazonicus (Pisces, Characidae), em áreas inundadas da Ilha de Marchantaria, Amazonas, Brasil. Acta Amazônica, 4, 661-664. https://doi.org/10.1590/S0044-59672004000400018.

Leite, R., Silva, J., & Freitas, C. (2006). Abundância e distribuição das larvas de peixes no Lago Catalão e no encontro dos rios Solimões e Negro, Amazonas, Brasil. Acta Amazonica. 36 (4), 557-562. https://doi.org/10.1590/S0044-59672006000400018.

Leonardo, A. F. G., Hoshiba, M. A., Urbinati, E. C., & Senhorini, J. A. (2013). Improvement of matrinxã, Brycon amazonicus, larviculture by exposing eggs to triiodothyronine. Journal of the World Aquaculture Society, 44, 141–147. https://doi.org/10.1111/jwas.12007.

Liao I. C., & Chang, E. (2010). Role of sensory mechanisms in predatory feeding behavior of juvenile red drum Sciaenops ocellatus. Fisheries Science, 69, 317-322. https://doi.org/10.1046/j.1444-2906.2003.00623.x.

Lima, A.C., & Araújo-Lima, C.A.R.M. (2004). The distributions of larval and juvenile fishes in Amazonian Rivers of different nutrient status. Fresh Water Biology, 49, 787-800. https://doi.org/10.1111/j.1365-2427.2004.01228.x.

Ljubobratovic, U., Kucska, B., Feledi, T., Poleksic, V., Marković, Z., Lenhardt, M., Peteri, A., Kumar, S., & Rónyai, András. (2015). Effect of Weaning Strategies on Growth and Survival of Pikeperch, Sander lucioperca, Larvae. Turkish Journal of Fisheries and Aquatic Sciences, 15(2), 325-331. 10.4194 / 1303-2712-v15_2_15.

Lopes, R.N.M., Senhorini, J.A., & Soares, M.C.F. (1995). Desenvolvimento larval e embrionário do matrinchã Brycon cephalus Günther, 1869, (Pisces, Characidae). Boletim Técnico do CEPTA, 8, 41-48.

Lopes, A. C. C., Villacorta‐Correa, M. A., & Carvalho, T. B. (2018). Lower light intensity reduces larval aggression in matrinxã, Brycon amazonicus. Behavioural Processes, 151, 62–66. https: //doi.org/10.1016/j. beproc.2018.01.017.

Maes, J., Taillieu, A., Van Damme, PA., Cottenie, K., & Ollevier, F. (1998). Seasonal patterns in the fish and crustacean community of a turbid temperate estuary (Zeeschelde Estuary, Belgium). Estuarine, Coastal and Shelf Science, 47, 143–151. https://doi.org/10.1006/ecss.1998.0350.

Miner, G., & Stein, R. (1993). Interactive influence of turbidity and light on larval bluegill (Lepomis macrochirus) foraging. Canadian Journal of Fisheries and Aquatic Sciences, 50, 781–788. https://doi.org/10.1139/f93-090.

Muller, R. L., Villacorta-Correa, M. A., & Carvalho, T. B. (2019). Light intensity affects the survival and growth of matrinxã larvae, Brycon amazonicus (Spix & Agassiz, 1829). Aquaculture Research, 50, 2410– 2418. https://doi.org/10.1111/are.14194.

Naas, K.E., Naess, T., & Harboe, T. (1992). Enhanced first feeding of halibut larvae (Hippoglossus hippoglossus L.) in green water. Aquaculture, 105, 143–156. https://doi.org/10.1016/0044-8486(92)90126-6.

Narejo, N.T., Rahmatullah, S.M., & Rashid, M.M. (2003). Effect of different shelters on growth, survival and production of freshwater mud eel, Monopterus cuchia (Hamilton) reared in concreted cisterns of BAU Mymensingh, Bangladesh. Pak. Pakistan Journal of Biological Sciences, 6, 1753-1757. https://doi.org/10.3923/ pjbs.2003.1753.1757.

Oliveira, E.N., Ducan, W.P., & Carvalho, T.B. (2020). Use of common salt affects aggressiveness in matrinxã larvae (Brycon amazonicus). Aquaculture Research, 00:1–7. https://doi.org/10.1111/are.14730.

Reitan, K.I., Rainuzzo, J.R., Oie, G., & Olsen, Y. (1993). Nutritional effects of algal addition in first-feeding of turbot (Scophthalmus maximus L.) larvae. Aquaculture, 118, 257–275. DOI: https://doi.org/10.1016/0044-8486(93)90461-7.

Reitan, K.I., Rainuzzo, J.R., Oie, G., & Olsen, Y. (1997). A review of the nutritional effects on algae in marine fish larvae. Aquaculture, 155, 207–221. https://doi.org/10.1016/S0044-8486(97)00118-X.

Rieger, P., & Summerfelt, R.C. (1997). The influence of turbidity on larval walleye, Stizostedion vitreum, behavior and development in tank culture. Aquaculture, 159, 19-32. https://doi.org/10.1016/S0044-8486(97)00187-7.

Romagosa, E., Narahara, M. Y., & Fenerich‐Verani, N. (2018). Stages of embryonic development of the “matrinxã”, Brycon cephalus (Pisces, Characidae). Boletim Instituto de Pesca, 27, 27–32. http://orcid.org/0000-0002-4879-479X.

Romagosa, E., Narahara, M.Y., Borella, M.I., & Fenerich-Verani, N. (2001) Seleção e caracterização de fêmeas de matrinxã, Brycon cephalus, induzidas a reprodução. Boletim do Instituto de Pesca, São Paulo, 27, 113-121. Retrieved from https://www.pesca.agricultura.sp.gov.br/27%5B2%5D-art_03.pdf.

Sahiduzzaman, S., Tauhiduzzaman& Rahman, S.M..( 2018). Effects of shelter on growth and survival of Asian catfish (Clarias batrachus). International Journal of Fisheries and Aquatic Research, 3, 60-63. Retrieved from http://www.fishjournals.com/archives/2018/vol3/issue1/3-1-24.

Salonen, M., & Engström-Öst, J. (2010). Prey capture of pike Esox lucius larvae in turbid water. Journal of Fish Biology, 76, 2591–2596. https://doi.org/10.1111/j.1095-8649.2010.02647.x.

Salonen, M., & Engström-Öst, J. (2013). Growth of pike larvae: effects of prey, turbidity and food quality. Hydrobiologia, 717, 169–175. https://doi.org/10.1007/s10750-013-1575-9.

Sanchez-Botero, J. I., Leitão, R. P., Caramaschi, E. P., & Garcez, D. S. (2007). The aquatic macrophytes as refuge, nursery and feeding habitats for freshwater fish Cabiúnas Lagoon, Restinga de Jurubatiba National Park, Rio de Janeiro, Brazil. Acta Limnologica Brasiliensia, 19,143-153. Retrieved from https://www.ablimno.org.br/acta/pdf/acta19_vol2_03.pdf.

Senhorini, J. A., Mantelatto, F. L. M., & Casanova, S. M. C. (1998). Larvae of Amazon species matrinxã, Brycon cephalus (Pisces, Characidae) in larviculture ponds. Boletim Técnico do CEPTA, 11, 13–28.

Senhorini, J.A., Gaspar, L.A., & Fransozo, A. (2002). Crescimento, sobrevivência e preferência alimentar de larvas de matrinxã (Brycon cephalus) e de piracanjuba (Brycon orbignyanus) em viveiros. Boletim Técnico do Cepta, 15, 9-21.

Shaw, G.W., Pankhurst, P.M., & Battaglene, S.C. (2006). Effect of turbidity, prey density and culture history on prey consumption of greenback flounder Rhombosolea tapirina larvae. Aquaculture, 253, 447–460. https://doi.org/10.1016/j.aquaculture.2005.09.025.

Silva, C.M. (2009). Abundância de juvenis do ovo de Characiformes migradores em área de várzeas do Rio Solimões (Amazonas, Brasil). Dissertação de mestrado INPA-FUA 54p. Retrieved from https://bdtd.inpa.gov.br/handle/tede/1425.

Sioli, H. (1968). Hydrochemistry and geology in the Brazilian Amazon region. Amazoniana, 1, 267–277. Retrieved from https://pure.mpg.de/rest/items/item_3148443_1/component/file_3148444/content.

Skov, C., & Koed, A. (2004). Habitat use of pike in experimental ponds in relation to cannibalism, zooplankton, water transparency and habitat complexity. Journal of Fish Biology, 64, 448–459. https://doi.org/10.1111/j.0022-1112.2004.00310.x.

Snickars, M., Sandstrom, A., & J. Mattila. (2004). Antipredator behaviour of 0-year Perca fluviatilis: effect of vegetation density and turbidity. Journal of Fish Biology, 65, 1604–1613. https://doi.org/10.1111/j.0022-1112.2004.00570.x.

Souza, E. C. M., Silva, J. P., Villacorta‐Correa, M. A., & Carvalho, T. B. (2014). Aggressiveness and locomotion activity related to hatching time in matrinxã, Brycon amazonicus (Spix and Agassiz, 1829). Applied Animal Behaviour Science, 157, 146–151. https: //doi.org/10.1016/j.applanim.2014.05.009.

Stuart, Kevin., & Drawbridge, Mark. (2011). The effect of light intensity and green water on survival and growth of cultured larval California yellowtail (Seriola lalandi). Aquaculture, 321, 152-156. https://doi.org/10.1016/j.aquaculture.2011.08.023.

Tamaru, C.S., Murashinge, R., & Lee, C.S. (1994). The paradox of using phytoplankton during the larval culture of striped mullet, Mugil cephalus L. Aquaculture, 119, 167–174. https://doi.org/10.1016/0044-8486(94)90173-2.

Tomazoni, J.C., Mantovani, L.E., Bittencourt, A.V. L., & Rosa Filho, E. F. (2005). Utilização de medidas de turbidez na quantificação da movimentação de sólidos por veiculação hídrica nas bacias dos rios Anta Gorda, Brinco, Coxilha Rica e Jirau – Sudoeste do Estado do Paraná. Boletim Paranaense de Geociências, 57, 49-56. http://dx.doi.org/10. 5380/geo.v57i0.6044.

Utne-Palm, A.C. (2002). Visual feeding of fish in a turbid environment: Physical and behavioural aspects, Marine and Freshwater Behaviour and Physiology, 35, 111-128. https://doi.org/10.1080/10236240290025644.

Utne, ACW. (2005). The effect of turbidity and illumination on the reaction distance and search time of the marine planktivore Gobiusculus flavescens. Journal of Fish Biology, 50, 926–938. https://doi.org/10.1111/j.1095-8649.1997.tb01619.x.

Zaniboni Filho, E., Reynalte-Tataje, D., & Weingartner, M. (2006). Potencialidad del género Brycon em la piscicultura brasileña. Revista Colombiana de Ciências Pecuárias, 19, 233-240. Retrieved from http://www.scielo.org.co/pdf/rccp/v19n2/v19n2a17.pdf.

Downloads

Published

17/11/2021

How to Cite

CORNÉLIO, J. P. de S.; BRAGA, L. G. T. .; VILLACORTA-CORREA, M. A. . Can turbid water and refuges with aquatic macrophytes increase the survival and growth of Brycon amazonicus larvae?. Research, Society and Development, [S. l.], v. 10, n. 15, p. e227101522737, 2021. DOI: 10.33448/rsd-v10i15.22737. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/22737. Acesso em: 6 jan. 2025.

Issue

Section

Agrarian and Biological Sciences