Application of logistic regression in the analysis of risk factor associated with arterial hypertension

Authors

DOI:

https://doi.org/10.33448/rsd-v10i16.22964

Keywords:

Association; Risk Factors; Fitted model.

Abstract

Logistic regression is an important technique for data modeling when you want to analyze the relationship between a response variable and one or more independent variables. The technique allows one to estimate the chances related to the probability of occurrence of an event of interest. Logistic regression differs from linear regression due to the dichotomous nature of the dependent variable and has been used in several areas of knowledge, including studies in the health area. This study used the logistic regression technique to analyze the association between Hypertension and certain risk factors. The data used comes from the National Health Survey (PNS) for the year 2019, carried out by the Brazilian Institute of Geography and Statistics (IBGE) in the country. Two models were adjusted, the final model being composed of seven variables with a statistical significance of 5%. Diagnostic techniques indicated an adequate fit of the model, as well as its accuracy for predictions. The results show that factors such as increasing age, high body mass index (BMI) and a positive diagnosis for diabetes increase the chances of an individual being hypertensive.

Author Biography

Sílvio Fernando Alves Xavier Júnior, Universidade Estadual da Paraíba

Licenciado em Matemática (UFPE). Possui Mestrado em Biometria e Estatísitica Aplicada (UFRPE). Doutorado em Biometria e Estatística Aplicada (UFRPE). Realizou estágio sanduíche na Texas A & M University (duração de 6 meses), United States, Biological and Agricultural Engineering Department. Coordenador do curso de Estatística (CCT/UEPB), presidente do colegiado do curso de Estatística. Membro do PROFMAT - UEPB. Áreas de interesse: Estatística Aplicada, Probabilidade e Inferência Estatística, MF-DFA, Markov Chain, PSO, Entropia e Análise de Tendências.

References

Alves, J. M. S. (2016). Dos mínimos quadrados à regressão linear: atividades históricas sobre função afim e estatística usando planilhas eletrônicas (Dissertação de Mestrado, Universidade Federal do Rio Grande do Norte).

Ahmad, W. M. A. W., Nawi, M. A. B. A., Aleng, N., Halim, N., Mamat, M., Hamzah, M., & Ali, Z. (2014). Association of hypertension with risk factors using logistic regression. Applied Mathematical Sciences, 8(52), 2563-2572.

Andriani, P., & Chamidah, N. (2019, August). Modelling of Hypertension Risk Factors Using Logistic Regression to Prevent Hypertension in Indonesia. In Journal of Physics: Conference Series 1306(1), 012027. IOP Publishing.

Barroso, W. K. S., Rodrigues, C. I. S., Bortolotto, L. A., Mota-Gomes, M. A., Brandão, A. A., Feitosa, A. D. D. M., ... & Nadruz, W. (2021). Diretrizes Brasileiras de Hipertensão Arterial–2020. Arquivos Brasileiros de Cardiologia, 116, 516-658.

Borges, A. C. do N., Bezerra, J. B., Alencar, V. Y. C., Silva, K. de A., Costa, A. A. A., Oliveira, B. G. S., Costa, A. L., Portela, J. V. F., & Bezerra, F. das C. L. (2020). Vitamin D linked to high blood pressure. Research, Society and Development, 9(1), e110911691. https://doi.org/10.33448/rsd-v9i1.1691

Bozpolat, E. (2016). Investigation of the Self-Regulated Learning Strategies of Students from the Faculty of Education Using Ordinal Logistic Regression Analysis. Educational Sciences: Theory and Practice, 16(1), 301-318.

Cabral, C. I. S. (2013). Aplicação do modelo de regressão logística num estudo de mercado (Dissertação de Mestrado). Universidade de Lisboa, Lisboa, Portugal.

Christensen, R. (1997). Logistic Regression, Logit Models, and Logistic Discrimination. Log-Linear Models and Logistic Regression, 116-177.

Constantin, C. (2015). Using the Logistic Regression model in supporting decisions of establishing marketing strategies. Bulletin of the Transilvania University of Brasov. Economic Sciences. Series 8(2), 4.

Cox, D. R., & Snell, E. J. (2018). Analysis of binary data. Routledge.

Cruz, C. J. F., & Mapa, D. (2013). An early warning system for inflation in the Philippines using Markov-switching and logistic regression models. Theoretical and Practical Research in Economic Fields, 2, 137-152.

Dunn, P. K., & Smyth, G. K. (1996). Randomized quantile residuals. Journal of Computational and Graphical Statistics, 5(3), 236-244.

Fawcett, T. (2006). An introduction to ROC analysis. Pattern recognition letters, 27(8), 861-874.

Figueira, C. V. (2006). Modelos de regressão logística (Dissertação de Mestrado). Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil.

Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. (2009). Análise multivariada de dados. Bookman editora.

Heo, B. M., & Ryu, K. H. (2018). Prediction of Prehypertenison and Hypertension Based on Anthropometry, Blood Parameters, and Spirometry. International journal of environmental research and public health, 15(11), 2571. https://doi.org/10.3390/ijerph15112571.

Hosmer Jr, D. W., Lemeshow, S., & Sturdivant, R. X. (2013). Applied logistic regression (Vol. 398). John Wiley & Sons.

Johnson, S., Corsten, M. J., McDonald, J. T., & Chun, J. (2010). Socio-economic factors and stage at presentation of head and neck cancer patients in Ottawa, Canada: A logistic regression analysis. Oral oncology, 46(5), 366-368.

Koç, A. A., & Yeniay, Ö. (2013). A comparative study of artificial neural networks and logistic regression for classification of marketing campaign results. Mathematical and Computational Applications, 18(3), 392-398.

Marques, A. P., Szwarcwald, C. L., Pires, D. C., Rodrigues, J. M., Almeida, W. D. S. D., & Romero, D. (2020). Fatores associados à hipertensão arterial: uma revisão sistemática. Ciência & Saúde Coletiva, 25, 2271-2282.

Mesquita, P. S. B. (2014). Um modelo de Regressão Logística para Avaliação de Programas de Pós-Graduação no Brasil (Dissertação de Mestrado). Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, Brasil.

Nascimento, R. L. do, Carvalho, F. O.., Araujo, F. de S.., Melo-Marins, D. de., Carneiro, M. V. O., Saraiva, L. C., Moreira, S. R., & Nascimento Junior, J. R. A. (2021). Anthropometric and hemodynamic indicators associated with arterial hypertension in sedentary people. Research, Society and Development, 10(7), e25310716603. https://doi.org/10.33448/rsd-v10i7.16603.

Pereira, M. A. A. (2019). Modelos não lineares assimétricos com efeitos mistos (Tese de Doutorado). Universidade Federal de São Carlos, São Carlos, Brasil.

Pregibon, D. (1981). Logistic regression diagnostics. The annals of statistics, 9(4), 705-724.

Souza, É. C. D. (2006). Análise de influência local no modelo de regressão logística (Tese de Doutorado). Universidade de São Paulo, São Paulo, Brasil.

Vital, T. G., Silva, I. de O., & Paz, F. A. do N. (2020). Arterial hypertension and work-related risk factors: a literature review. Research, Society and Development, 9(7), e905975085. https://doi.org/10.33448/rsd-v9i7.5085.

Published

04/12/2021

How to Cite

SILVEIRA, M. B. G. da .; BARBOSA, N. F. M. .; PEIXOTO, A. P. B. .; XAVIER, Érika F. M. .; XAVIER JÚNIOR, S. F. A. Application of logistic regression in the analysis of risk factor associated with arterial hypertension. Research, Society and Development, [S. l.], v. 10, n. 16, p. e20101622964, 2021. DOI: 10.33448/rsd-v10i16.22964. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/22964. Acesso em: 8 jan. 2025.

Issue

Section

Exact and Earth Sciences