Chemical assessment, antioxidant and antimicrobial of leafs extracts of Virola sebifera, an Amazonian medicinal plant

Authors

DOI:

https://doi.org/10.33448/rsd-v10i15.23068

Keywords:

Virola sebifera; Legal Amazon; Ucuuba; Chemical composition; Anti-bacterial agents.

Abstract

The high biodiversity of Amazon forest implies in a great number of plants with ethnopharmacological utilization. V. sebifera is one of the most important species of Virola genus, used in treatment of rheumatism, arthritis, dyspepsia, malaria, muscle pain and erysipelas. This study aimed to investigate its chemical composition, antioxidant and antimicrobial properties. For this, leafs extracts i) 70% ethanol in ultrasound bath (CEU); ii) 70% ethanol in Soxhlet (CES); and iii) sequential extraction in Soxhlet apparatus, starting with hexane (HE), followed by methanol (ME), and 70% ethanol extract (EE). Phenolic concentration, total flavonoid and antioxidant activity were assessed. The highest phenolic and total flavonoid contents were found in CEU and EE showed the best antioxidant activity. The most relevant substances identified by GC-MS analysis were the Kusunokinin, Hinokinin and catechol, among others first time related in V. sebifera. The antimicrobial activity was tested against Staphylococcus aureus, S. epidermidis, Salmonella typhimurium, Escherichia coli, and Candida albicans. The CEU, CES, EM, and EE obtained positive results against S. aureus and S. epidermidis. CES and EM also inhibited S. typhimurium and E. coli. Based on these results, V. sebifera can be recognized as a promising source of antioxidant and antimicrobial compounds.

References

Akhtar, N., Ihsan-ul-Haq., & Mirza, B. (2018). Phytochemical analysis and comprehensive evaluation of antimicrobial and antioxidant properties of 61 medicinal plant species. Arabian Journal of Chemistry, 11, 1223-1235. https://doi.org/10.1016/j.arabjc.2015.01.013.

Allah, M. O. W., Alrasheid, A. A., & Elamin, A. S. (2018). Phytochemical screening, chemical composition and antioxidant activity of leaves and bark extracts from Khaya senegalensis. Advances in Biochemistr, 6, 32-38. https://doi.org/10.11648/j.ab.20180604.12.

Amorim, E. L. C., Nascimento, J. E. N., Monteiro, J. M., Sobrinho, T. J. S. P., Araújo, T. A., & Albuquerque, U. P. (2008). A simple and accurate procedure for the determination of tannin and flavonoid levels and some applications in ethnobotany and ethnopharmacology. Functional Ecosystems and Communities, 2, 88-94.

Araújo, E. R. D., Oliveira, D. C., Soares, T. C., Langassner, S. M. Z., Tavares, J. C. M., & Silva, D. G. K. C. (2015). Avaliação do potencial antimicrobiano de extrato hidroalcoólico e aquoso da espécie Anadenanthera colubrina frente às bactérias gram-negativa e gram-positiva. Biota Amazônia, 5, 66-71. https://doi.org/0.18561/2179-5746/biotaamazonia.v5n3p66-71.

Balasubramani, G., Ramkumar, R., Krishnaveni, N., Sowmiya, R., Deepak, P., & Dhayalan, A. (2015). GC–MS analysis of bioactive components and synthesis of gold nanoparticle using Chloroxylon swietenia DC leaf extract and its larvicidal activity. Journal of Photochemistry and Photobiology B: Biology, 148, 1-8. https://doi.org/10.1016/j.jphotobiol.2015.03.016

Baquero, E., Quiñones, W., Franzblau, S., Torres, F., Archbold, R., & Echeverri, L. F. (2015). Furan type lignans with antimycobacterial activity. Boletín Latino Americano y del Caribe de Plantas Medicinales y Aromáticas, 14, 171-178. Disponível em: https://www.redalyc.org/articulo.oa?id=85638535003.

Barreto, H. P., Pavan, E., Silva, K. M. G., Felicio, R. F. M., & Moraes, L. C. A. (2011). Análise comparativa da atividade antimicrobiana da seiva, óleo e frações da espécie Virola sebifera. Disponível em http://www.sbpcnet.org.br/livro/63ra/resumos/resumos/4923.htm.

Bernardes, N. R., Pessanha, F. F., & Oliveira, D. B. (2010). Alimentos Funcionais: Uma breve revisão. Ciência e Cultura – Revista Científica Multidisciplinar do Centro Universitário da FEB, 6, 11-20.

Bicalho, K. U., Terezan, A. P., Martins, D. C., Freitas, T. G., Fernandes, J. B., & Silva, F. M. F. G. da. (2012). Evaluation of the toxicity of Virola sebifera crude extracts, fractions and isolated compounds on the nest of leaf-cutting ants. Psyche, 12, 7. https://doi.org/10.1155/2012/785424.

Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidante activity. Food Science and Technology, 28, 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5.

Braquehais, I. D., Vasconcelos, F. R., Ribeiro, A. R. C., Silva, A. R. A. da., Franca, M. G. A., & Lima, D. R. de. (2016). Estudo preliminar toxicológico, antibacteriano e fitoquímico do extrato etanólico das folhas de Jatropha mollissima (Pohl) Baill. (pinhão-bravo, Euphorbiaceae), coletada no Município de Tauá, Ceará, Nordeste Brasileiro. Revista Brasileira de Plantas Medicinais, 18, 582-587. https://doi.org/10.1590/1983-084x/15_164.

Breitbach, U. B., Niehues, M., Lopes, N. P., Faria, J. E. Q., & Brandão, M. G. L. (2013). Amazonian Brazilian medicinal plants described by C.F.P. Von Martius in the 19th century. Journal of Ethnopharmacology, 147, 180-189. https://doi.org/10.1016/j.jep.2013.02.030.

Castro, M. C., Baeza, A., Codeço, C. T., Cucunubá, Z. M., Dal'Asta, A. P., & De Leo, G. A. (2019). Development, environmental degradation, and disease spread in the Brazilian Amazon. PLoS Biology, 17, 3000526. https://doi.org/10.1371/journal.pbio.3000526.

Castuera-Oliveira, L., Oliveira-Filho, A. T. D., & Eisenlohr, P. V. (2020). Emerging hotspots of tree richness in Brazil. Acta Botanica Brasilica, 34, 117-134. https://doi.org/10.1590/0102-33062019abb0152.

Chen, X., Fuchun, G., Cao, Z., Zou, W., & Gu, T. (2018). Highly cysteine-selective fluorescent nanoprobes based on ultrabright and directly synthesized carbon quantum dots. Analytical and Bioanalytical Chemistry, 410, 2961-2970. https://doi.org/10.1007/s00216-018-0980-3.

Choteau, C. F., Tuccio, B., Villamena, F. A., Charles, L., Pucci, B., & Durand, G. (2012). Synthesis of Tris-hydroxymethyl-Based Nitrone Derivatives with Highly Reactive Nitronyl. J. Org. Chem, 77, 938−948. https://doi.org/10.1021/jo202098x.

CLSI, (2012). Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Second Informational Supplement, M100-S22. Wayne, PA, USA: Clinical and Laboratory Standards Institute.

, Monterio, O. dos S., Lobato, R. C., Rodrigues, A. A. C., Santos, L. V. dos., & Disponível emhttp://www.sboe.net.br/viisboe/cd/Resumos/Resumo7SBOE_109.pdf.

Costa-Lotufo, L. V., Jimeneza, P. C., Wilkea, D. V., Leala, L. K. A. M., Cunha, G. M. A., & Silveira, E. R. (2003). Antiproliferative effects of several compounds isolated from Amburana cearensis AC Smith. Zeitschriftfür Naturforschung, 58, 675-680. https://doi.org/10.1515/znc-2003-9-1014.

Coutinho, C. J. M., Jardim, M. A., Castro, A. A. J .F., & Viana-Junior, A. B. (2019). Biogeographic connections of Brazilian savannas: partition of marginal and disjoint diversity and conservation of the northern ecotonal tropic in a biodiversity hotspot. Revista Brasileira de Geografia Física, 12, 2407-2427. https://doi.org/10.26848/rbgf.v12.7.p2407-2427.

Coutinho, M. A. S., Muzitano, M. F., & Sônia, C. (2009). Flavonoides: potenciais agentes terapêuticos para o processo inflamatório. Revista Virtual de Química, 1, 241-256. https://doi.org/10.5935/1984-6835.20090024.

Cowan, M. M. (1999). Plants products as antimicrobial agents. Clinical Microbiology Reviews, , 12, 564-582. https://doi.org/10.1128 / CMR.12.4.564.

Denny, C., Zacharias, M. E., Kohn, L. K., Foglio, M. A., & Carvalho, J. E. (2007). Atividade antiproliferativa dos extratos e da fração orgânica obtidos das folhas de Virola sebifera Aubl. (Myristicaceae). Revista Brasileira de Farmacognosia (Brazilian Journal of Pharmacognosy), 17, 598-603. https://doi.org/10.1590/S0102-695X2007000400020.

Denny, C., Zacharias, M. E., Ruiz, A. L. T. G., Amaral, M. C., Bittrich, V., & Kohn, L. K. (2008). Antiproliferative properties of polyketides isolated from Virola sebifera leaves. Phytotherapy Research, 22, 127-130. https://doi.org/10.1002/ptr.2251.

Díaz, L. L. O. (2015). Perfilado metabólico de plantas del género Virola spp (Myristicaceae) provenientes de la Amazonía y Orinoquía Colombiana y evaluación de la actividad antifúngica contra Fusarium oxysporum. (Dissertação de mestrado, Universidad Nacional de Colombia). Disponível em https://repositorio.unal.edu.co/handle/unal/56153.

Dzah, C. S., Duana, Y., Zhanga, H., Wena, C., Zhanga, J., Chenc, G., & Ma, H. (2020). The effects of ultrasound assisted extraction on yield, antioxidant, anticancer and antimicrobial activity of polyphenol extracts: A review. Food Bioscience, 35, 1-9. https://doi.org/10.1016/j.fbio.2020.100547.

Exner, M., Bhattacharya, S., Christiansen, B., Gebel, J., Goroncy-Bermes, P., & Hartemann, H. P. (2017). Antibiotic resistance: What is so special about multidrug-resistant Gram-negative bacteria?. GMS Hygiene and Infection Control, 12, 1. https://doi.org/10.3205/dgkh000290.

Fernandes, K R. ., Bittercourt, P. S., Souza, A. D. L. D., Souza, A. Q. L. D., Silva, F. M. A. D., & Lima, E. S. (2019). Phenolic compounds from Virola venosa (Myristicaceae) and evaluation of their antioxidant and enzyme inhibition potential. Acta Amazonica , 49, 48-53. https://doi.org/10.1590/1809-4392201800832.

Ferreira, D. F. (2008). Sisvar: um programa para análises e ensino de estatística. Revista Científica Symposium, 6, 36-41.

Garcia, D., Díaz, B., Saldaña, R., Monteiro, Ú., Sotero, V., & Chavez, J. (2019). Evaluation of the antioxidant activity of 31 amazonian vegetable species of Tamshiyacu Loreto-Peru. Journal of Natural Sciences, 7, 16-22. https://doi.org/10.15640/jns.v7n1a1.

Ghuman, S., Ncube, B., Finnie, J. F., McGaw, L. J., Coopoosamy, R. M., & Van Staden, J. (2016). Antimicrobial activity, phenolic content, and cytotoxicity of medicinal plant extracts used for treating dermatological diseases and wound healing in KwaZulu-Natal, South Africa. Frontiers in Pharmacology, 7, 320. https://doi.org/10.3389/fphar.2016.00320.

Girondi, C. M., Oliveira, A. B. de., Prado, J. A., Koga-Ito, C. Y., Borges, A. C., & Delbem, A. C. B. (2017). Screening of plants with antimicrobial activity against enterobacteria, Pseudomonas spp. and Staphylococcus spp. Future Microbiologia, 12, 671-681. https://doi.org/10.2217/fmb-2016-0129.

Gong, F., Zou, W., Wang, Q., Deng, R., Cao, Z., & Gu, T. (2019). Polymer nanoparticles integrated with excited-state intramolecular próton transfer-fluorescent modules as sensors for the detection of vitamin B1. Microchemical Journal, 148, 767-773. https://doi.org/10.1016/j.microc.2019.05.057.

Harrington, M. J., Masic, A., Holten-Andersen, N., Waite, J. H., & Fratzl, P. (2010). Iron-clad fibers: A metal-based biological strategy for hard flexible coatings. Science, 328, 216-220. https://doi.org/10.1126 / science.1181044.

Huang, S., Zhang, C.-P., Li, G. Q., Sun, Y.-Y., Wang, K., & Hu, F.-L. (2014). Identification of catechol as a new marker for detecting propolis adulteration. Molecules, 19, 10208-10217. https://doi.org/10.3390/molecules190710208.

Justino, G. C., Correia, C. F., Mira, L., Santos, R. M. B., Simões, J. A. M., & Silva, A. M. (2006). Antioxidant activity of a catechol derived from abietic acid. Journal of Agricultural and Food Chemistry, 54, 342-348. https://doi.org/10.1021/jf052062k.

Kaunda, J. S., & Zhang, Y.-J. (2017). The genus carissa: na ethnopharmacological, phytochemical and pharmacological review. Natural Products and Bioprospecting, 7, 181-199. https://doi.org/10.1007/s13659-017-0123-0.

Kokoska, L., Kloucek, P., Leuner, O., & Novy, P. (2019). Plant-derived products as antibacterial and antifungal agents in human health care. Current medicinal chemistry, 26, 5501-5541. https://doi.org/10.2174/0929867325666180831144344.

Kosalec, I., Kremer, D., Locatelli, M., Epifano, F., Genovese, S., & Carlucci, G. (2013). Anthraquinone profile, antioxidant and antimicrobial activity of bark extracts of Rhamnus alaternus, R. fallax, R. intermedia and R. pumila. Food Chemistry, 136, 335-341. https://doi.org/10.1016/j.foodchem.2012.08.026.

Lee, H., Dellatore, S. M., Miller, W. M., & Messersmith, P. B. (2007). Mussel-inspiredsurface chemistry for multifunctional coatings. Science, 318, 426-430. https://doi.org/10.1126 / science.1147241.

Lee, J., Yoo, K.C., Ko, J., Yoo, B., Shin, J., & Lee, S.-J. (2017). Hollow hyaluronic acid particles by competition between adhesive and cohesive properties of catechol for anticancer drug carrier. Carbohydrate Polymers, 164, 309-316. https://doi.org/10.1016/j.carbpol.2017.02.009.

Li, C., Li, G., Wang, R., Ji, L., Lou, Y., Lu, J., & Wan, K. (2017). Resazurin microtiter assay for detection of drug resistance and determination of critical concentration of cycloserine resistance of Mycobacterium tuberculosis. International Journal Of Clinical And Experimental Medicine, 10, 3624-3628.

Lima, C. M. D. S., Fujishima, M. A. T., Santos, B. É. F. D., Lima, B. D. P., Mastroianni, P. C., Sousa, F. F. O. D., & Silva, J. O. D. (2019). Phytopharmacovigilance in the elderly: highlights from the Brazilian Amazon. Evidence-Based Complementary and Alternative Medicine, 12. https://doi.org/10.1155/2019/9391802.

Lin, Y., Song, X., Fu, J., Lin, J., & Qu, Y. (2009). Microbial transformation of phytosterol in corn flour and soybean flour to 4-androstene-3,17-dione by Fusarium moniliforme Sheld. Bioresource Technology., 100, 1864-1867, https://doi.org/10.1016/j.biortech.2008.09.040.

Liu, W., Wu, L., Zhang, X.,H., & Chen, J.,H. (2014). Highly-selective electrochemical determination of catechol based on 3-aminophenylboronic acid-3,4,9,10-perylene tetracarboxylic acid functionalized carbon nanotubes modified electrode. Anal. Methods, 6, 718-724, https://doi.org/10.1039 / C3AY41633J.

Liu, Y., Wang, R., Zhu, Y., Li, R., & Zhang, J. (2015). Photoelectrochemical sensing of catechol based on CdS-DNA-pristine graphene nanocomposite film. Sensors and Actuators B: Chemical, 210, 355-361, https://doi.org/10.1016/j.snb.2014.12.124.

Lopes, L. M. X., Yoshida, M., & Gottlieb, O. R. (1983). The chemistry of Brazilian Myristicaceae. Part XIX. Dibenzylbutyrolactone lignans from Virola sebifera. Phytochemistry (Elsevier), 22, 1516-18, https://doi.org/10.1016/S0031-9422(00)84055-8.

Manandhar, S., Luitel, S., & Dahal, R. K. (2019). In vitro antimicrobial activity of some medicinal plants against human pathogenic bacteria. Journal of Tropical Medicine, https://doi.org/10.1155/2019/1895340.

Marcotullio, M. C., Pelosi, A., & Curini, M. (2014). Hinokinin, an emerging bioactive lignan. Molecules, 19, 14862-14878, https://doi.org/10.3390/molecules190914862.

Martínez-Francés, V., Hahn, E., Ríos, S., Rivera, D., Reich, E., Vila, R., & Cañigueral, S. (2017). Ethnopharmacological and chemical characterization of Salvia species used in valencian traditional herbal preparations. Frontiers in Pharmacology, 8, 467, https://doi.org/10.3389/fphar.2017.00467.

Ministério do Meio Ambiente (2018). Biomas, Amazônia. https://www.mma.gov.br/biomas/amazonia/.

Monteiro, J. M., Albuquerque, U. P., Araújo, E. L., & Amorim, E. L. C. (2005). Taninos: Uma abordagem da química à ecologia. Química Nova, 28, 892-896, https://doi.org/10.1590/S0100-40422005000500029.

Moraes, C. L. L., Luz, F. J., Matos, F. J. R., Lima, R. B., Borges, C. H. A., & dos Santos, A. C. (2019). A Ethno-knowledge of medicinal plants in a community in the eastern Amazon. Journal of Agricultural Sciences, 42, 565-573, https://doi.org/10.19084/rca.15625.

Morin, J. B., & Sello, J. K. (2010). Efficient synthesis of a peculiar vicinal diamine semiochemical from Streptomyces natalensis. Organic Letters, 12, 3522-3524, https://doi.org/10.1021/ol1013763.

Mouco, G., Bernardino, M. J., & Cornélio, M. L. (2003). Quality control of medicinal herbs. Revista Biotecnologia Ciência & Desenvolvimento, 31, 68-73.

Nawaz, H., Shad, M. A., Rehman, N., Andaleeb, H., & Ullah, N. (2020). Effect of solvent polarity on extraction yield and antioxidant properties of phytochemicals from bean (Phaseolus vulgaris) seeds. Brazilian Journal of Pharmaceutical Sciences, 56, 1-9, https://doi.org/10.1590/s2175-97902019000417129.

NCCLS, (2003). Performance Standards for Antimicrobial Disk Susceptibility Tests, NCCLS Document M2-A8, NCCLS, Wayne, Pa,USA, 8th edition.

Oliveira, A. I. T., Cabral, J. B., Mahmoud, T. S., Do Nascimento, G. N. L., da Silva, J. F. M., Pimenta, R. S., & de Morais, P. B. (2017). In vitro antimicrobial activity and fatty acid composition through gas chromatography-mass spectrometry (GC-MS) of ethanol extracts of Mauritia flexuosa (Buriti) fruits. Journal of Medicinal Plants Research, 11, 635-641, https://doi.org/10.5897/JMPR2017.6460.

Palomino, J. C., Martin, A., Camacho, M., Guerra, H., Swings, J., & Portaels, F. (2002). Resazurin microtiter assay plate: simple and inexpensive method for 51 detection of drug resistance in Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 46, 2720-2722, https://doi.org/10.1128 / AAC.46.8.2720-2722.2002.

Peixoto Sobrinho, T. J. S., Castro, V. T. N. A., Saraiva, A. M., Almeida, D. M., Tavares, E.A., & Amorim, E. L. C. (2011). Phenolic content and antioxidant capacity of four Cnidoscolus species (Euphorbiaceae) used as ethnopharmacologicals in Caatinga, Brazil. African Journal of Pharmacy and Pharmacology, 5, 2310-2316, https://doi.org/10.5897/AJPP11.608.

Pereira, S. F. M., Andrade, E. H. A., Cascaes, M. M., Nascimento, L. D., Anjos, T. O., & Moraes, A. A. B. (2018). Avaliação do rendimento e composição química do óleo essência das folhas, frutos de Virola sebifera Aubl. (myrisiticaceae). Disponível em http://www.abq.org.br/cbq/2018/trabalhos/7/1981-26910.html.

Rammohan, A., Bhaskar, B. V., Venkateswarlu, N., Rao, V. L., Gunasekar, D., & Zyryanov, G. V. (2019). Isolation of flavonoids from the flowers of Rhynchosia beddomei Baker as prominent antimicrobial agents and molecular docking. Microbial Pathogenesis, 136, 1-7, https://doi.org/10.1016/j.micpath.2019.103667.

Reyes-Munguía, A., Carrillo-Inungaray, M. L., Carranza-Álvarez, C., Pimentel-González, D. ., & Alvarado-Sánchez, B. (2016). Antioxidant activity, antimicrobial and effects in the immune system of plants and fruits extracts. Frontiers in Life Science, 9, 90-98, https://doi.org/10.1080/21553769.2015.1104388.

Rezende, K. R., Davino, S. ., Barros, S M., & Kato, M. J. (2005). Antioxidant activity of aryltetralone lignans and derivatives from Virola sebifera (Aubl.). Natural Product Researc, 19, 661-666, https://doi.org/10.1080/14786410412331302118.

Rodrigues, W. A. (1980). Revisão taxonômica das espécies de Virola Aublet (Myristicaceae) do Brasil.. Acta Amazônica, 10, 3-127, https://doi.org/10.1590/1809-43921980101s003.

Roquette, J. G., Lobo, F. A., & Hunter, M. H. (2019). What can we do to promote sustainable development in the Brazilian amazon? Agricultural Research & Technology, 22, 556219, https://doi.org/10.19190/ARTOAJ.2019.22.556219.

Santamaría-Aguilar, D., Aguilar, R., & Lagomarsino, L. P. A. (2019). Taxonomic synopsis of Virola (Myristicaceae) in Mesoamerica, including six new species. PhytoKeys, 134, 1, https://doi.org/10.3897/phytokeys.134.37979.

Santiago, V. W. T., Fonseca, C., da Silva Z. A. C., Santana Machado, F., Souza de Moura, A., & Leite Fontes, M. A. (2019). Species composition and frequency of habitat use by medium and large-sized mammals in the Brazilian Cerrado Biome, State of Tocantins. Acta Scientiarum: Biological Sciences, 41, 45684, https://doi.org/10.4025/actascibiolsci.v41i1.45684.

Saraiva, M., Ferreira, M. D. P., da Cunha, D. A., Daniel, L. P., Homma, A. K. O., & Pires, G. F. (2020). Forest regeneration in the brazilian amazon: public policies and economic conditions. Journal of Cleaner Production, 122424, https://doi.org/10.1016/j.jclepro.

Sarwar, R., Farooq, U., Khan, A., Naz, S., Khan, S., Khan, A., Rauf, A., Bahadar, H., & Uddin, R. (2015). Evaluation of antioxidant, free radical scavenging, and antimicrobial activity of quercus incana roxb. Front. in Pharmacol., 6, 277, https://doi.org/10.3389/fphar.2015.00277.

Simões, C. M. O. (2017). Farmacognosia: Do produto natural ao medicamento; Editora Artmed: Porto Alegre.

Soares, I. M., Bastos, E. G. P., Sobrinho, T. J .S. P., Alvim. T. C., Silveira, M. A., & Aguiar, R. W. S. (2014). Conteúdo fenólico e atividade antioxidante de diferentes cultivares de ipomoea batatas (l.) lam. obtidas por melhoramento genético para produção industrial de etanol. Revista de Ciências Farmacêuticas Básica e Aplicada, 35, 479-488.

Soares, I. M., Ribeiro, M. F., Costa, O. J., Souza, É. E., Aguiar, A. A., & Barbos, R. S. (2017). Application of a degreasing process and sequential ultrasound-assisted extraction to obtain phenolic compounds and elucidate of the potential antioxidant of Siparuna guianensis Aublet. Journal of Medicinal Plants Research, 11, 357-366, https://doi.org/10.5897/JMPR2017.6387.

Somavilla, A., Junior, R. N. M. M., Oliveira, M. L., & Rafael, J. A. (2020). Biodiversity of insects in the amazon: survey of social wasps (Vespidae: polistinae) in amazon rainforest areas in amazonas state, Brazil. Sociobiology, 67, 312-321, https://doi.org/10.13102/sociobiology.v67i2.4061.

Toiu, A., Mocan, A., Vlase, L., Pârvu, A. E., Vodnar, D.,C., & Gheldiu, A. M. (2018). Phytochemical composition, antioxidant, antimicrobial and in vivo anti-inflammatory activity of traditionally used Romanian Ajuga laxmannii (Murray) Benth. (“Nobleman’s Beard” – Barba Împa˘ ratului). Frontiers in Pharmacology, 9, 7, https://doi.org/10.3389/fphar.2018.00007.

Tonelli, F. M. P., Siqueira, J. M., Maia, G. A. S., Soares, L. F., Da Silva, D. B., Carollo, C. A., & Sartori, A. L. B. (2014). Bioautography as a search tool to identify the allelopathic compounds in Virola sebifera. Allelopathy Journal, 33, 277-288.

Ullah, M. A., Sarkar, B., Hossain, S., Mohammad, N. U. R., & Islam, M. S. (2019). Phytochemicals and metabolites as antimicrobial agents from medicinal plants of Bangladesh: A review; Pharma Tutor, 7, 1-11, https://doi.org/10.29161/PT.v7.i6.2019.1.

Velasco, J., Contreras, E., Buitrago, D., & Velazco, E. (2005). Efecto antibacteriano de Virola sebifera sobre Staphylococcus aureus resistente a meticilina. Ciência, 13, 411-415.

Vieira, D. S., Peixoto, R. M., Costa, M. M., Freire, D. P., Silva, T. M. G., & Silva, T. M. S. (2018). Atividade antimicrobiana in vitro do extrato etanólico bruto da folha da Hymenaea martiana Hayne frente às Staphylococcus spp. e avaliação de seu potencial como desinfetante em cabras. Pesquisa Veterinária Brasileira, 38, 462-469, https://doi.org/10.1590/1678-5150-pvb-4547.

Wangteeraprasert, R., Lipipun, V., Gunaratnam M., Neidle, S., Gibbons, S., & Likhitwitayawuid, K. (2012). Bioactive compounds from Carissa Spinarum. Phytotherapy Res., 26, 1496-1499, https://doi.org/10.1002/ptr.4607.

Yin, B., Williams, T., Koehler, T., Morris, B., & Manna, K. (2018). Targeted microbial control for hydrocarbon reservoir: Identify new biocide offerings for souring control using thermophile testing capabilities. International Biodeterioration & Biodegradation, 126, 204-207, https://doi.org/10.1016/j.ibiod.2016.07.019.

Zou, W., Gong, F., Chen, X., Cao, Z., Xia, J., & Gu, T. (2018). Intrinsically fluorescent and highly functionalized polymer nanoparticles as probes for the detection of zinc and pyrophosphate ions in rabbit sérum samples. Talanta, 188, 203-209, https://doi.org/10.1016/j.talanta.2018.05.087.

Downloads

Published

03/12/2021

How to Cite

RIBEIRO, C. L. .; SILVA, R. M. .; FERNANDES, R. de M. N. .; ARAÚJO, M. R.; SOARES, I. M. .; SILVA, J. F. M. da .; NASCIMENTO, G. N. L. do .; PIMENTA, R. S. .; SCAPIN, E. Chemical assessment, antioxidant and antimicrobial of leafs extracts of Virola sebifera, an Amazonian medicinal plant. Research, Society and Development, [S. l.], v. 10, n. 15, p. e578101523068, 2021. DOI: 10.33448/rsd-v10i15.23068. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/23068. Acesso em: 7 nov. 2024.

Issue

Section

Health Sciences