Effect of water and alkali on purification bacterial cellulose membrane from Kombucha
DOI:
https://doi.org/10.33448/rsd-v10i15.23267Keywords:
Bacterial cellulose; Kombucha; Purification; Crystallinity; Water; Alkali.Abstract
Bacterial cellulose membrane (BCM) is a biomaterial synthesized by bacteria of the genus Gluconocetobacter hansenii with a higher degree of purity than plant cellulose. The commonly used raw material for manipulating bacterial cellulose is kombucha, a beverage consumed by a vast population around the world that promises health benefits. The beverage is composed of tea species Camellia sinenses and a carbon source, refined sucrose, and a starter culture of bacteria and yeast with 10% fermented tea (starter tea) to activate the fermentative process. The Kombucha’s bacterial cellulose membranes (KBCM) are formed over 7 to 10 days on the surface of the fermented product and have the appearance of a gelatinous membrane, this being the by-product of interest. In this work, the objective was to obtain the membrane composed of cellulose via Kombucha and purify it to obtain crystalline cellulose. The purification was performed with distilled water and 0.5M NaOH sodium hydroxide solution to remove residues from the fermentation, successfully removing sugars and bacteria. At the end of the experiments, a lighter film was obtained with coloration close to white, and comparative analyses were performed to verify the structural chemical composition, crystallinity, and morphology of the samples by techniques FTIR, DRX, and SEM, respectively. Then, once the biomaterial was purified, the range of applications expanded to several products to meet the biomedical area, sustainable packaging, and even the fashion industry.
References
Aditiawati, P., Dungani, R., Muharam, S., Sulaeman, A., Hartati, S., Dewi, M., & Rosamah, E. (2021). The Nanocellulose Fibers from Symbiotic Culture of Bacteria and Yeast (SCOBY) Kombucha: Preparation and Characterization. In Nanofibers - Synthesis, Properties and Applications. IntechOpen. https://doi.org/10.5772/intechopen.96310
Alila, S., Besbes, I., Vilar, M. R., Mutjé, P., & Boufi, S. (2013). Non-woody plants as raw materials for production of microfibrillated cellulose (MFC): A comparative study. Industrial Crops and Products, 41(1), 250–259. https://doi.org/10.1016/j.indcrop.2012.04.028
Amarasekara, A. S., Wang, D., & Grady, T. L. (2020). A comparison of kombucha SCOBY bacterial cellulose purification methods. SN Applied Sciences, 2(2). https://doi.org/10.1007/s42452-020-1982-2
Costa, P. Z. R. D. C., & Biz, P. (2017). Cultivando materiais: o uso da celulose bacteriana no design de produtos Growning materials: the use of bacterial cellulose in product design.
Dima, S. O., Panaitescu, D. M., Orban, C., Ghiurea, M., Doncea, S. M., Fierascu, R. C., Nistor, C. L., Alexandrescu, E., Nicolae, C. A., Trica, B., Moraru, A., & Oancea, F. (2017). Bacterial nanocellulose from side-streams of kombucha beverages production: Preparation and physical-chemical properties. Polymers, 9(8). https://doi.org/10.3390/polym9080374
Domskiene, J., Sederaviciute, F., & Simonaityte, J. (2019). Kombucha bacterial cellulose for sustainable fashion. International Journal of Clothing Science and Technology, 31(5), 644–652. https://doi.org/10.1108/IJCST-02-2019-0010
Goh, W. N. (2012). Fermentation of black tea broth (Kombucha): I. Effects of sucrose concentration and fermentation time on the yield of microbial cellulose. In International Food Research Journal 19 (1).
Jayabalan, R., Malbaša, R. v., Lončar, E. S., Vitas, J. S., & Sathishkumar, M. (2014). A review on kombucha tea-microbiology, composition, fermentation, beneficial effects, toxicity, and tea fungus. In Comprehensive Reviews in Food Science and Food Safety 13(4), 538–550. https://doi.org/10.1111/1541-4337.12073
Jozala, A. F., Pértile, R. A. N., dos Santos, C. A., de Carvalho Santos-Ebinuma, V., Seckler, M. M., Gama, F. M., & Pessoa, A. (2015). Bacterial cellulose production by Gluconacetobacter xylinus by employing alternative culture media. Applied Microbiology and Biotechnology, 99(3), 1181–1190. https://doi.org/10.1007/s00253-014-6232-3
Karina, M., Indrarti, L., Yudianti, R., Indriyati, & Syampurwadi, A. (2012). Alteration of Bacterial Cellulose Properties by Diacetylglycerol. Procedia Chemistry, 4, 268–274. https://doi.org/10.1016/j.proche.2012.06.037
Laavanya, D., Shirkole, S., & Balasubramanian, P. (2021). Current challenges, applications and future perspectives of SCOBY cellulose of Kombucha fermentation. In Journal of Cleaner Production (295). https://doi.org/10.1016/j.jclepro.2021.126454
Li, J., Chen, G., Zhang, R., Wu, H., Zeng, W., & Liang, Z. (2019). Production of high crystallinity type-I cellulose from Komagataeibacter hansenii JR-02 isolated from Kombucha tea. Biotechnology and Applied Biochemistry, 66(1), 108–118. https://doi.org/10.1002/bab.1703
Lin, D., Lopez-Sanchez, P., Li, R., & Li, Z. (2014). Production of bacterial cellulose by Gluconacetobacter hansenii CGMCC 3917 using only waste beer yeast as nutrient source. Bioresource Technology, 151, 113–119. https://doi.org/10.1016/j.biortech.2013.10.052
Maiti, S., Jayaramudu, J., Das, K., Reddy, S. M., Sadiku, R., Ray, S. S., & Liu, D. (2013). Preparation and characterization of nano-cellulose with new shape from different precursor. Carbohydrate Polymers, 98(1), 562–567. https://doi.org/10.1016/j.carbpol.2013.06.029
Rangaswamy, B. E., Vanitha, K. P., & Hungund, B. S. (2015). Microbial Cellulose Production from Bacteria Isolated from Rotten Fruit. International Journal of Polymer Science, 2015. https://doi.org/10.1155/2015/280784
Souza, L., & Recouvreux, D. O. S. (2016). NANOCRISTAIS DE CELULOSE BACTERIANA A PARTIR DE HIDRÓLISE ENZIMÁTICA Bacterial Cellulose Nanocrystals from Enzymatic Hydrolysis.
Tapias, Y. A. R., Peltzer, M. A., Delgado, J. F., & Salvay, A. G. (1947). Kombucha Tea By-product as Source of Novel Materials: Formulation and Characterization of Films. https://doi.org/10.1007/s11947-020-02471-4/Published
Ugale, V. (2021). Preparation of kombucha tea review on:Different kinds of microorganism’s used for development of the kombucha. International Journal of Advances in Engineering and Management (IJAEM), 3, 815. https://doi.org/10.35629/5252-0302815822
Vandamme, E. J., de Baets, S., Vanbaelen, " A, Joris, K., & de Wulf’, P. (1998). Improved production of bacterial cellulose and its application potential. Polymer Degrnddon and Sfabihfy 59.
Vazquez, A., Foresti, M. L., Cerrutti, P., & Galvagno, M. (2013). Bacterial Cellulose from Simple and Low Cost Production Media by Gluconacetobacter xylinus. Journal of Polymers and the Environment, 21(2), 545–554. https://doi.org/10.1007/s10924-012-0541-3
Wang, J., Tavakoli, J., & Tang, Y. (2019). Bacterial cellulose production, properties and applications with different culture methods – A review. Carbohydrate Polymers 219, 63–76. https://doi.org/10.1016/j.carbpol.2019.05.008
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Letícia Pereira dos Santos Barbosa de Sousa; Priscila Maria Sarmeiro Correa Marciano Leite; Angela Aparecida Vieira; Anderson Carlos Faria; Lucia Vieira
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.