Effect of water and alkali on purification bacterial cellulose membrane from Kombucha

Authors

DOI:

https://doi.org/10.33448/rsd-v10i15.23267

Keywords:

Bacterial cellulose; Kombucha; Purification; Crystallinity; Water; Alkali.

Abstract

Bacterial cellulose membrane (BCM) is a biomaterial synthesized by bacteria of the genus Gluconocetobacter hansenii with a higher degree of purity than plant cellulose. The commonly used raw material for manipulating bacterial cellulose is kombucha, a beverage consumed by a vast population around the world that promises health benefits. The beverage is composed of tea species Camellia sinenses and a carbon source, refined sucrose, and a starter culture of bacteria and yeast with 10% fermented tea (starter tea) to activate the fermentative process. The Kombucha’s bacterial cellulose membranes (KBCM) are formed over 7 to 10 days on the surface of the fermented product and have the appearance of a gelatinous membrane, this being the by-product of interest. In this work, the objective was to obtain the membrane composed of cellulose via Kombucha and purify it to obtain crystalline cellulose. The purification was performed with distilled water and 0.5M NaOH sodium hydroxide solution to remove residues from the fermentation, successfully removing sugars and bacteria. At the end of the experiments, a lighter film was obtained with coloration close to white, and comparative analyses were performed to verify the structural chemical composition, crystallinity, and morphology of the samples by techniques FTIR, DRX, and SEM, respectively. Then, once the biomaterial was purified, the range of applications expanded to several products to meet the biomedical area, sustainable packaging, and even the fashion industry.

References

Aditiawati, P., Dungani, R., Muharam, S., Sulaeman, A., Hartati, S., Dewi, M., & Rosamah, E. (2021). The Nanocellulose Fibers from Symbiotic Culture of Bacteria and Yeast (SCOBY) Kombucha: Preparation and Characterization. In Nanofibers - Synthesis, Properties and Applications. IntechOpen. https://doi.org/10.5772/intechopen.96310

Alila, S., Besbes, I., Vilar, M. R., Mutjé, P., & Boufi, S. (2013). Non-woody plants as raw materials for production of microfibrillated cellulose (MFC): A comparative study. Industrial Crops and Products, 41(1), 250–259. https://doi.org/10.1016/j.indcrop.2012.04.028

Amarasekara, A. S., Wang, D., & Grady, T. L. (2020). A comparison of kombucha SCOBY bacterial cellulose purification methods. SN Applied Sciences, 2(2). https://doi.org/10.1007/s42452-020-1982-2

Costa, P. Z. R. D. C., & Biz, P. (2017). Cultivando materiais: o uso da celulose bacteriana no design de produtos Growning materials: the use of bacterial cellulose in product design.

Dima, S. O., Panaitescu, D. M., Orban, C., Ghiurea, M., Doncea, S. M., Fierascu, R. C., Nistor, C. L., Alexandrescu, E., Nicolae, C. A., Trica, B., Moraru, A., & Oancea, F. (2017). Bacterial nanocellulose from side-streams of kombucha beverages production: Preparation and physical-chemical properties. Polymers, 9(8). https://doi.org/10.3390/polym9080374

Domskiene, J., Sederaviciute, F., & Simonaityte, J. (2019). Kombucha bacterial cellulose for sustainable fashion. International Journal of Clothing Science and Technology, 31(5), 644–652. https://doi.org/10.1108/IJCST-02-2019-0010

Goh, W. N. (2012). Fermentation of black tea broth (Kombucha): I. Effects of sucrose concentration and fermentation time on the yield of microbial cellulose. In International Food Research Journal 19 (1).

Jayabalan, R., Malbaša, R. v., Lončar, E. S., Vitas, J. S., & Sathishkumar, M. (2014). A review on kombucha tea-microbiology, composition, fermentation, beneficial effects, toxicity, and tea fungus. In Comprehensive Reviews in Food Science and Food Safety 13(4), 538–550. https://doi.org/10.1111/1541-4337.12073

Jozala, A. F., Pértile, R. A. N., dos Santos, C. A., de Carvalho Santos-Ebinuma, V., Seckler, M. M., Gama, F. M., & Pessoa, A. (2015). Bacterial cellulose production by Gluconacetobacter xylinus by employing alternative culture media. Applied Microbiology and Biotechnology, 99(3), 1181–1190. https://doi.org/10.1007/s00253-014-6232-3

Karina, M., Indrarti, L., Yudianti, R., Indriyati, & Syampurwadi, A. (2012). Alteration of Bacterial Cellulose Properties by Diacetylglycerol. Procedia Chemistry, 4, 268–274. https://doi.org/10.1016/j.proche.2012.06.037

Laavanya, D., Shirkole, S., & Balasubramanian, P. (2021). Current challenges, applications and future perspectives of SCOBY cellulose of Kombucha fermentation. In Journal of Cleaner Production (295). https://doi.org/10.1016/j.jclepro.2021.126454

Li, J., Chen, G., Zhang, R., Wu, H., Zeng, W., & Liang, Z. (2019). Production of high crystallinity type-I cellulose from Komagataeibacter hansenii JR-02 isolated from Kombucha tea. Biotechnology and Applied Biochemistry, 66(1), 108–118. https://doi.org/10.1002/bab.1703

Lin, D., Lopez-Sanchez, P., Li, R., & Li, Z. (2014). Production of bacterial cellulose by Gluconacetobacter hansenii CGMCC 3917 using only waste beer yeast as nutrient source. Bioresource Technology, 151, 113–119. https://doi.org/10.1016/j.biortech.2013.10.052

Maiti, S., Jayaramudu, J., Das, K., Reddy, S. M., Sadiku, R., Ray, S. S., & Liu, D. (2013). Preparation and characterization of nano-cellulose with new shape from different precursor. Carbohydrate Polymers, 98(1), 562–567. https://doi.org/10.1016/j.carbpol.2013.06.029

Rangaswamy, B. E., Vanitha, K. P., & Hungund, B. S. (2015). Microbial Cellulose Production from Bacteria Isolated from Rotten Fruit. International Journal of Polymer Science, 2015. https://doi.org/10.1155/2015/280784

Souza, L., & Recouvreux, D. O. S. (2016). NANOCRISTAIS DE CELULOSE BACTERIANA A PARTIR DE HIDRÓLISE ENZIMÁTICA Bacterial Cellulose Nanocrystals from Enzymatic Hydrolysis.

Tapias, Y. A. R., Peltzer, M. A., Delgado, J. F., & Salvay, A. G. (1947). Kombucha Tea By-product as Source of Novel Materials: Formulation and Characterization of Films. https://doi.org/10.1007/s11947-020-02471-4/Published

Ugale, V. (2021). Preparation of kombucha tea review on:Different kinds of microorganism’s used for development of the kombucha. International Journal of Advances in Engineering and Management (IJAEM), 3, 815. https://doi.org/10.35629/5252-0302815822

Vandamme, E. J., de Baets, S., Vanbaelen, " A, Joris, K., & de Wulf’, P. (1998). Improved production of bacterial cellulose and its application potential. Polymer Degrnddon and Sfabihfy 59.

Vazquez, A., Foresti, M. L., Cerrutti, P., & Galvagno, M. (2013). Bacterial Cellulose from Simple and Low Cost Production Media by Gluconacetobacter xylinus. Journal of Polymers and the Environment, 21(2), 545–554. https://doi.org/10.1007/s10924-012-0541-3

Wang, J., Tavakoli, J., & Tang, Y. (2019). Bacterial cellulose production, properties and applications with different culture methods – A review. Carbohydrate Polymers 219, 63–76. https://doi.org/10.1016/j.carbpol.2019.05.008

Downloads

Published

02/12/2021

How to Cite

SOUSA, L. P. dos S. B. de .; LEITE, P. M. S. C. M. .; VIEIRA, A. A.; FARIA, A. C. .; VIEIRA, L. Effect of water and alkali on purification bacterial cellulose membrane from Kombucha . Research, Society and Development, [S. l.], v. 10, n. 15, p. e526101523267, 2021. DOI: 10.33448/rsd-v10i15.23267. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/23267. Acesso em: 6 jan. 2025.

Issue

Section

Agrarian and Biological Sciences