Influence of temperature variation on the generation of a photovoltaic system connected to the grid for power generation under field conditions

Authors

DOI:

https://doi.org/10.33448/rsd-v10i16.23425

Keywords:

Photovoltaic Solar System; Photovoltaic Modules; Inclination; Dirt; Efficiency.

Abstract

This experiment aimed to analyze the temperature behavior of photovoltaic modules, with the efficiency of the on-grid photovoltaic system, installed at the State University of West Paraná - UNIOESTE, campus of Cascavel, Paraná. The photovoltaic system consists of two ropes, with a total power of 3.3 kWp. In the first period, it was found that the panel kept clean (Panel 2), during data collection, reached a higher efficiency during the first weeks and practically the same for the last weeks, compared to the dirty panel. Achieve an average efficiency of 13.73% and 14.39%, Panel 1 and Panel 2, respectively. For the second period, the average efficiency of both panels, with inclinations of 21° and 26°, was very close, being 14.25% (Panel 1) and 14.24% (Panel 2). The third period showed a difference in the efficiency of the panels, 13.7% (Panel 1) and 14.54% (Panel 2), with inclinations of 21° and 18°, respectively. The test of means identified that there was a difference between the levels of soiling of the modules, as well as their inclinations of 21° and 18°. As for the 21° and 26° inclinations, there was no significant difference, according to the Tukey Test at 5% significance.

References

Ali, H. M. (2020). Recent advancements in PV cooling and efficiency enhancement integrating phase change materials based systems – A comprehensive review. Solar Energy, 197, 163-198. doi: 10.1016/j.solener.2019.11.075.

Agência Nacional de Energia Elétrica. ANEEL. (2012). Resolução Normativa N° 482, de 17 de abril de 2012. Brasília. 12p.

Agência Nacional de Energia Elétrica. ANEEL. (2015). Resolução Normativa N° 687, de 24 de novembro de 2015. Brasília. 25p.

Centro de Referência para as Energias Solar e Eólica Sérgio de Salvo Brito. CRESESB. (2018). Potencial Solar - SunData V3.0. Retrieved Apr 23, 2020, from http://www.cresesb.cepel.br/index.php?section=sundata.

Chander, S., Purohit, A., Sharma, A., Arvind, Nehra, S. P., & Dhaka, M. S. (2015). A study on photovoltaic parameters of monocrystalline silicon solar cell with cell temperature. Energy Reports, 1, 104-109. doi: 10.1016/j.egyr.2015.03.004.

Ciulla, G., Lo Brano, V., & Moreci, E. (2013). Forecasting the cell temperature of PV modules with an adaptive system. International Journal of Photoenergy, 2013, 1-10. doi: 10.1155/2013/192854

Cotfas, D. T., Cotfas, P. A., & Machidon, O. M. (2018). Study of temperature coefficients for parameters of photovoltaic cells. International Journal of Photoenergy, 2018, 1-12. doi: 10.1155/2018/5945602.

Dantas, G. M., Mendes, O. L. C., Maia, S. M., & de Alexandria, A. R. (2020). Dust detection in solar panel using image processing techniques: A review. Research, Society and Development, 9(8), doi: 10.33448/rsd-v9i8.5107.

Deceglie, M. G., Silverman, T. J., Johnston, S. W., Rand, J. A., Reed, M. J., Flottemesch, R., & Repins, I. L. (2020). Light and Elevated Temperature Induced Degradation (LeTID) in a Utility-Scale Photovoltaic System. IEEE Journal of Photovoltaics, 10, 1084-1092. doi: 10.1109/JPHOTOV.2020.2989168

Duffie, J. A., & Beckman, W. A. (2013). Solar Engineering of Thermal Processes. Solar Energy Laboratory University of Wisconsin, Madison. 4. ed. New Jersey: John Wiley & Sons. 910p.

Ferreira, A., Kunh, S. S., Fagnani, K. C., Souza, T. A., Tonezer, C., Santos, G. R., & Coimbra-Araújo, C. H. (2018). Economic overview of the use and production of photovoltaic solar energy in Brazil. Renewable and Sustainable Energy Reviews, 81, 181-191. doi: 10.1016/j.rser.2017.06.102.

Jakoplić, A., Frankovic, D., Kirinčić, V., & Plavšić, T. (2021). Benefits of short-term photovoltaic power production forecasting to the power system. Optimization and Engineering, 22 (1), 9-27. doi: 10.1007/s11081-020-09583-y

Jaszczur, M., Teneta, J., Hassa, Q., Majewska, E., & Hanus, R. (2021). An experimental and numerical investigation of photovoltaic module temperature under varying environmental conditions. Heat Transfer Engineering, 42 (3-4), 354-367. doi: 10.1080/01457632.2019.1699306

Jordan, R. A., Moreira Junior, O., Antunes, B. M., Motomiya, A. V. de A., Sanches, Í. S., Sanches, É. S., Omido, A. R., & Martins, E. A. S. (2021). Performance of a photovoltaic panel (PV) converted to a thermal photovoltaic with collector for hot water (PVT/w). Research, Society and Development, 10(7), doi: 10.33448/rsd-v10i7.16438

Kannan, N., & Vakeesan, D. (2016). Solar energy for future world: a review. Renewable and Sustainable Energy Reviews, 62, 1092-1105. doi: 10.1016/j.rser.2016.05.022.

Khanna, S., Reddy, K. S., & Mallick, T. K. (2017). Performance analysis of tilted photovoltaic system integrated with phase change material under varying operating conditions. Energy, 133, 887-899. doi: 10.1016/j.energy.2017.05.150.

Klugmann-Radziemska, E. (2015). Degradation of electrical performance of a crystalline photovoltaic module due to dust deposition in northern Poland. Renewable Energy, 78, 418-426. doi: 10.1016/j.renene.2015.01.018

Lacerda, J. S., Van Den Bergh, J. C. J. M. (2016). Diversity in solar photovoltaic energy: Implications for innovation and policy. Renewable and Sustainable Energy Reviews, 52, 331-340. doi: 10.1016/j.rser.2015.10.032.

Medeiros, R. R. B., Lima, A. V. N. A., Diniz, G. F., Melo, V. M., Souza, L. G. M., & Silva, K. C. G. (2021). Performance study of a hybrid photovoltaic/thermal system. Research, Society and Development, 10(7), doi: 10.33448/rsd-v10i7.16156.

Micheli, L., Theristis, M., Talavera, D. L., Almonacid, F., Stein, J. S., & E. F. Fernandez (2020). Photovoltaic cleaning frequency optimization under different degradation rate patterns. Renewable Energy, 166, 136-146. doi: 10.1016/j.renene.2020.11.044.

Pereira, E. B., Martins, F. R., Gonçalves, A. R., Costa, R. S., Lima, F. L., Rüther, R., Abreu, S. L., Tiepolo, G. M., Pereira, S. V., Souza, J. G. (2017). Atlas brasileiro de energia solar, 2. ed. São José dos Campos: INPE. 88p.

Rahman, M. M., Hasanuzzaman, M., & Rahim, N. A. (2015). Effects of various parameters on PV-module power and efficiency. Energy Conversion and Management, 103, 348-358. doi: 10.1016/j.enconman.2015.06.067.

Rostami, S., Afrand, M., Shahsavar, A., Sheikholeslami, M., Kalbasi, R., Aghakhani, S., Shadloo, M. S., & Oztop, H. F. (2020). A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage. Energy, 211, 118698. doi: 10.1016/j.energy.2020.118698.

Santhakumari, M., & Sagar, N. (2019). A review of the environmental factors degrading the performance of silicon wafer-based photovoltaic modules: Failure detection methods and essential mitigation techniques. Renewable and Sustainable Energy Reviews, 110, 83-100. doi: 10.1016/j.rser.2019.04.024.

Shan, F., Tang, F., Cao, L. & Fang, G. (2014). Comparative simulation analyses on dynamic performances of photovoltaic–thermal solar collectors with different configurations. Energy Conversion and Management, 87, 778-786. doi: 10.1016/j.enconman.2014.07.077.

Shahid, H., Kamran, M., Mehmood, Z., Saleem, M. Y., Mudassar, M., & Haider, K. (2018). Implementation of the novel temperature controller and incremental conductance MPPT algorithm for indoor photovoltaic system. Solar Energy, 163, 235-242. doi: 10.1016/j.solener.2018.02.018.

Sharaf, M., Huzayyin, A. S., & Yousef, M. S. (2021). Performance enhancement of photovoltaic cells using phase change material (PCM) in winter. Alexandria Engineering Journal, In Press, Corrected Proof

.doi: 10.1016/j.aej.2021.09.044.

Singh, G. K. (2013). Solar power generation by PV (photovoltaic) technology: A review. Energy, 53, 1-13. doi: 10.1016/j.energy.2013.02.057.

Souza, R. (2016). Os sistemas de energia solar fotovoltaica: Livro digital de introdução aos sistemas solares. Ribeirão Preto: Bluesol Energia Solar. 114p.

Tonin, F. S. (2017). Caracterização de Sistemas Fotovoltaicos Conectados à Rede Elétrica na Cidade de Curitiba. Dissertação de Mestrado. Engenharia Elétrica, Universidade Tecnológica Federal do Paraná – UTFPR, Curitiba-PR, 2017.

Yilbas, B.S., Ali, H., Al-Aqeeli, N., Abu-Dheir, N., & Khaled, M. (2016). Influence of mud residues on solvent induced crystalized polycarbonate surface used as PV protective cover. Solar Energy, 125, 282-293. doi: 10.1016/j.solener.2015.12.010.

Zilles, R., Macêdo, W. N., Galhardo, M. A. B., Oliveira, S. H. F. (2012). Sistemas fotovoltaicos conectados à rede elétrica. São Paulo: Oficina de textos. 208p.

Downloads

Published

12/12/2021

How to Cite

ZAMPIVA, M. M. M. .; SIQUEIRA, J. A. C. .; NOGUEIRA, C. E. C. .; TOKURA, L. K. .; ALOVISI, A. M. T. .; FOLTZ, L. L. .; PRIOR, M.; CANEPPELE, F. de L. . Influence of temperature variation on the generation of a photovoltaic system connected to the grid for power generation under field conditions. Research, Society and Development, [S. l.], v. 10, n. 16, p. e274101623425, 2021. DOI: 10.33448/rsd-v10i16.23425. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/23425. Acesso em: 27 nov. 2024.

Issue

Section

Agrarian and Biological Sciences