Essential oils of Eplingiella fruticosa populations: chemical, antioxidant, and cytotoxic analyses

Authors

DOI:

https://doi.org/10.33448/rsd-v10i16.23723

Keywords:

Chemical composition; Eplingiella fruticosa; Biological activities.

Abstract

This study investigates the variations in the chemical profiles and biological activities (antioxidant and cytotoxic) of Eplingiella fruticosa from the state of Sergipe, an endemic species from the Northeast region of Brazil. The essential oils were extracted from six populations by hydrodistillation and analyzed by GC/MS-FID. Cluster analysis was performed with the data of the constituents of the essential oils, and then a dissimilarity matrix, based on Euclidean distances, and a dendrogram, through the Ward clustering method, were constructed. The antioxidant activity of the essential oils was tested by different assays (DPPH, ABTS, β-carotene, and FRAP), and cytotoxic activity was tested by the SRB assay. The compounds found in greater amounts were α-pinene, β-pinene, 1,8-cineole, camphor, borneol, δ-elemene, α-cubebene, α-ylangene, (E)-caryophyllene, germacrene D, bicyclogermacrene, trans-calamenene, spathulenol, caryophyllene oxide, and viridiflorol. These compounds defined the formation of two groups. The first group was composed of the populations of São Cristóvão, Itaporanga, Japaratuba, and Malhada dos Bois municipalities and was characterized by the presence of the monoterpene camphor (8.39-11.27%) as the compound of greatest concentration in relation to the other municipal areas. The second group was composed of the populations of Moita Bonita and Pirambu municipalities and was characterized by the major presence of the sesquiterpene bicyclogermacrene (7.45% and 10.98%). The plants exhibited weak effects in terms of antioxidant activity; however, the essential oil showed significant toxicity for the lines A549 (51.00% cell viability) in the population of Japaratuba, and B16F10 (64.94% cell viability) in Malhada dos Bois. The observations of this study may open a way to optimize the use of the E. fruticosa populations in relation to their cytotoxic properties.

Author Biographies

Jéssika Andreza Oliveira Pinto, Universidade Federal de Sergipe

Programa de Pós-Graduação em Agricultura e Biodiversidade

Anne Karoline de Souza Oliveira, Universidade Federal de Sergipe

Departamento de Nutrição

Edmilson Willian Propheta dos Santos, Universidade Federal de Sergipe

Departamento de Morfologia

Ana Mara de Oliveira e Silva, Universidade Federal de Sergipe

Departamento de Nutrição

Maria de Fátima Arrigoni-Blank, Universidade Federal de Sergipe

Programa de Pós-Graduação em Agricultura e Biodiversidade

References

Adams, R. P. (2017). Identification of essential oils components by gas chromatography/quadrupole mass spectrometry. Allured Publishing Cooperation, Illinois, USA.

Amorati, R., Foti, M.C., Valgimigli, L. (2013). Antioxidant activity of essential oils. Journal of Agricultural and Food Chemistry, 61(46), 10835-10847.

Anulika, N. P., Inácio, E.O., Raymond, E. S., Osasere, O.I., Abiola, A.H. (2016). The chemistry of natural product: Plant secondary metabolites. International Journal of Technology Enhancements and Emerging Engineering Research, 4(8), 1-8.

Beserra-Filho, J. I. A, Macêdo, A. M., Leão, A. H. F. F., Bispo, J. M. M., Santos, J. R., Oliveira-Melo, A. J., Menezes, P. P., Duarte, M. C., Araújo, A. A. S., Silva, R.H., Quintans-Júnior, L.J., Ribeiro, A.M. (2019). Eplingiella fruticosa leaf essential oil complexed with β-cyclodextrin produces a superior neuroprotective and behavioral profile in a mice model of Parkinson's disease. Food and Chemical Toxicology, 124, 17-29.

Brand-Williams, W., Cuvilier, M.E., Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. Lebensmittel-Wissenschaft Technologie, 28(1), 25-30.

Bray, F., Ren, J. S., Masuyer, E., Ferlay, J. (2013). Global estimates of cancer prevalence for 27 sites in the adult population in 2008. International Journal of Cancer, 132(5), 1133-1145.

Chaturvedi, T., Kumar, A., Kumar, A., Verma, R.S., Padalia, R.C., Sundaresan, V., Chauhan, A., Saikia, D., Singh, V.R., Venkatesha, K.T. (2018). Chemical composition, genetic diversity, antibacterial, antifungal and antioxidant activities of camphor-basil (Ocimum kilimandscharicum Guerke). Industrial Crops and Products, 118, 246-258.

Coté, H., Boucher, M. A., Pichette, A., Legault, J. (2017). Anti-inflammatory, antioxidant, antibiotic, and cytotoxic activities of Tanacetum vulgare L. essential oil and its constituents. Medicines, 4(2), 34.

Couto, H. G. S. A., Blank, A. F., Silva, A. M. D. O., Nogueira, P. C. L., Arrigoni-Blank, M. F., Nizio, D. A. C., Pinto, J. A. O. (2019). Essential oils of basil chemotypes: major compounds, binary mixtures, and antioxidant activity. Food Chemistry, 293, 446-454.

Dhifi, W., Bellili, S., Jazi, S., Bahloul, N., Mnif, W. (2016). Essential oils’ chemical characterization and investigation of some biological activities: A critical review. Medicines, 3(4), 25.

Ehlert, P. A. D., Blank, A. F., Arrigoni-Blank, M. F., Paula, J. W. A., Campos, D. A., Alviano, C. S. (2006). Tempo de hidrodestilação na extração de óleo essencial de sete espécies de plantas medicinais. Revista Brasileira de Plantas Medicinais, 8(2), 79-80.

El Yaagoubi, M., Ortiz, S., Mechqoq, H., Cavaleiro, C., Lecsö‐Bornet, M., Rodrigues, M.J., Custódioe, L., El Mousadika, A., Grougnet, R., El Aouada, N., Msanda, F., Kritsanida, M. (2021). Chemical composition, antibacterial screening and cytotoxic activity of Chiliadenus antiatlanticus (Asteraceae) essential oil. Chemistry & Biodiversity, 18(6), 2100115.

Ferreira, D. F. (2011). Sisvar: a computer statistical analysis system. Ciência e agrotecnologia, 35, 1039-1042.

Franco, C. R. P., Antoniolli, Â. R., Guimarães, A. G., Andrade, D. M., Jesus, H. C. R., Alves, P. B., Bannet, L. E ., Patrus, A. H., Azevedo, E. G., Queiroz, D. B., Quintans, L. J. (2011). Bioassay-guided evaluation of antinociceptive properties and chemical variability of the essential oil of Hyptis fruticosa. Phytotherapy Research, 25(11), 1693-1699.

Guenther, E. (1972). The essential oils: volume three – individual essential oils of the plant families Rutaceae and Labiatae. Malabar: Krieger. 777p.

Harley, R. M., Pastore, J. (2012). A generic revision and new combinations in the Hyptidinae (Lamiaceae), based on molecular and morphological evidence. Phytotaxa, 58(1), 1-55.

Kasinski, A. L., Kelnar, K., Stahlhut, C., Orellana, E., Zhao, J., Shimer, E., Dysart, S., Chen, X., Bader, A. G., Slack, F. J. (2015). A combinatorial microRNA therapeutics approach to suppressing non-small cell lung cancer. Oncogene, 34(27), 3547-3555.

Kaushik, A. K., Ralph, J.D. (2018). Applications of metabolomics to study cancer metabolism. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 1870(1), 2-14.

Jamshidi-Kia, F., Lorigooini, Z., Amini-Khoei, H. (2018). Medicinal plants: past history and future perspective. Journal of herbmed pharmacology, 2018(1), 1-7.

Jemli, M. E., Kamal, R., Marmouzi, I., Zerrouki, A., Cherrah, Y., Alaoui, K. (2016). Radical-scavenging activity and ferric reducing ability of Juniperus thurifera (L.), J. oxycedrus (L.), J. phoenicea (L.) and Tetraclinis articulata (L.). Advances in pharmacological sciences, 2016, 1-6.

Leporini, M., Bonesi, M., Loizzo, M.R., Passalacqua, N.G., Tundis, R. (2020). The essential oil of Salvia rosmarinus Spenn. from Italy as a source of health-promoting compounds: Chemical profile and antioxidant and cholinesterase inhibitory activity. Plants, 9(6) 798.

Mesquita, L. S. S. D., Luz, T. R. S. A., Mesquita, J. W. C. D., Coutinho, D. F., Amaral, F. M. M. D., Ribeiro, M. N. D. S., Malik, S. (2019). Exploring the anticancer properties of essential oils from family Lamiaceae. Food Reviews International, 35(2), 105-131.

Miguel, M. G. (2010). Antioxidant and anti-inflammatory activities of essential oils: a short review. Molecules, 15(12), 9252-9287.

Miller, H. E. (1971). A simplified method for the evaluation of antioxidants. Journal of the American Oil Chemists' Society, 48(2), 91.

Nieto, G. (2017). Biological activities of three essential oils of the Lamiaceae family. Medicines, 2017(3), 63.

Oliveira, E. A., Oliveira, L. M., Lordelo, M. S., Sales, R. P. (2021). Ecogeographic studies on Eplingiella fruticosa (Salzm. Ex Benth. Harley& J.F.B. Pastore: A medicinal species of the semiarid region of Brazil. Research, Society and Development, 10(4), e37610413963.

Oliveira Melo, A.J., Heimarth, L., dos Santos Carvalho, A. M., Quintans, J. D. S. S., Serafini, M. R., de Souza Araújo, A. A., Alves, P. B., Ribeiro, A. M., Shanmugam, S., Quintans-Júnior, L. J., Duarte., M. C. (2020). Eplingiella fruticosa (Lamiaceae) essential oil complexed with β-cyclodextrin improves its anti-hyperalgesic effect in a chronic widespread non-inflammatory muscle pain animal model. Food and Chemical Toxicology, 135, 110940.

Orellana, E., Kasinski, A. (2016). Sulforhodamine B (SRB) assay in cell culture to investigate cell proliferation. Bio-Protocol, 2016(21), e1984.

Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free radical biology and medicine, 26(9-10), 1231-1237.

Sharifi-Rad, J., Sureda, A., Tenore, G. C., Daglia, M., Sharifi-Rad, M., Valussi, M., Tundis, R., Sharifi-Rad, M., Loizzo, M. R., Ademiluyi, A. O., Sharifi-Rad, R., Ayatollahi, S.A., Sharifi-Rad, R. (2017). Biological activities of essential oils: From plant chemoecology to traditional healing systems. Molecules, 22(1), 70.

Silva, D. C., Diniz, L. E. C., Blank, A. F., Nizio, D. A. C., Pinto, J. A. O., Pereira, K. L. G., Arrigoni-Blank, M. F. (2017). Assessment of genetic diversity of a native population of Eplingiella fruticosa: a plant with therapeutic potential. Genetics and Molecular Research, 16, 1-10.

Silva, D. C., Blank, A. F., Nizio, D. A. C., Sampaio, T. S., Nogueira, P. C. L., Arrigoni-Blank, M. F. (2018). Chemical diversity of essential oils from native populations of Eplingiella fruticosa. Crop Breeding and Applied Biotechnology,18, 205-214.

Singhal, M., Paul, A., Singh, H. P. (2014). Synthesis and reducing power assay of methyl semicarbazone derivates. Journal of Saudi Chemical Society, 18(2), 121-127.

Sivakumar, T., Balasubramanian, S. (2020). A review on some folk medicinal plants and their common uses. Research Biotica, 2(4), 131-134.

Sousa, E.O., Rocha, J.B., Barros, L.M., Barros, A.R., Costa, J.G. (2013). Phytochemical characterization and in vitro antioxidant properties of Lantana camara L. and Lantana montevidensis Briq. Industrial Crops and Products, 43, 517-522.

Tariq, A., Sadia, S., Pan, K., Ullah, I., Mussarat, S., Sun, F., Abiodun, O., Batbaatar, A., Li, Z., Song, D., Xiong, Q., Ullah, R., Khan, S., Basnet, B., Kumar, B., Islam, R., Adnan, M. (2017). A systematic review on ethnomedicines of anti‐cancer plants. Phytotherapy Research, 31(2), 202-264.

Uritu, C. M., Miha, C. T., Stanciu, G. D., Dodi, G., Alexa-Stratulat, T., Luca, A., Leon-Constantin, M. M., Stefanescu, R., Bild, V., Melnic, S., Tamba, B. I. (2018). Medicinal plants of the family Lamiaceae in pain therapy: A review. Pain Research and Management, 44p.

Van Den Dool, H., Kratz, P. D. (1963). A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. Journal of Chromatography A, 11, 463-471.

Downloads

Published

13/12/2021

How to Cite

PINTO, J. A. O. .; OLIVEIRA, A. K. de S.; SANTOS, E. W. P. dos .; SILVA, A. M. de O. e .; BLANK, A. F.; CORRÊA, C. B. .; NOGUEIRA, P. C. L.; ARRIGONI-BLANK, M. de F. Essential oils of Eplingiella fruticosa populations: chemical, antioxidant, and cytotoxic analyses . Research, Society and Development, [S. l.], v. 10, n. 16, p. e341101623723, 2021. DOI: 10.33448/rsd-v10i16.23723. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/23723. Acesso em: 19 apr. 2024.

Issue

Section

Agrarian and Biological Sciences