Architecture of an intelligent tutor system for personalized recommendation of learning objects considering the theory of structured knowledge maps




Intelligent Tutoring Systems; Affective Computing; Adaptive Course Planning; Informatics in education.


This work proposes an architecture of an Intelligent Tutor System based on the Theory of Structured Knowledge to customize the learning objects offered to the student. For this, it intends that the teacher's interface be inserted in the system's architecture. The adaptive sequencing of the course is carried out through the theory of Structured Knowledge Maps, in which the teacher will be responsible for specifying the concepts and minimum knowledge needed to understand each item in the curriculum. In the student interface, in order to avoid cognitive overload, the system will map the prerequisite doubts of concepts and knowledge and then present the learning objects, in different formats, according to the needs of student learning. Thus, through the information contained in the Student Model and the Domain Model, upon detecting that the student is in an unproductive learning cycle, as well as a need for learning, the Pedagogical Module will execute personalized instructions based on prior knowledge and affective profile of the student.


Aquino, B. et al. (2020). Geração de sequências curriculares adaptativas baseada no perfil dos alunos e materiais didáticos utilizando o algoritmo nsga-iii. In: SBC. Anais do XXXI Simpósio Brasileiro de Informática na Educação. 902–911.

Brusilovsky, P. (1998). Methods and techniques of adaptive hypermedia. In: Adaptive hypertext and hypermedia. Springer,p. 1–43.

Chabot, D. et al. (2005). Pedagogia Emocional: sentir para aprender. Sá Editora.

Costa, N. S. et al. (2016). Teaching and learning with structured knowledge maps: An analysis about the new approach. Creative Education, Scientific Research Publishing, 7(15), 2212.

Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and brain sciences, Cambridge University Press, 24(1), 87–114.

Dermeval, D. et al. (2018). Authoring tools for designing intelligent tutoring systems: a systematic review of the literature. International Journal of Artificial Intelligence in Education, Springer, 28(3), 336–384.

Dwivedi, P., Kant, V., Bharadwaj, K. K. (2018). Learning path recommendation based on modified variable length genetic algorithm. Education and information technologies, Springer, 23(2), 819–836.

Ebbinghaus, H. (1964). Memory: Acontribution to experimental psychology. Dover.

Eilenberg, S., Maclane, S. (1945). General theory of natural equivalences. Transactions of the American Mathematical Society, American Mathematical Society, 58(2), 231–294.

Ferreira, D. C. M. et al. (2014). Mapas de conhecimento estruturado: proposta de uma nova abordagem metodológica de ensino e aprendizagem. Educare, 9.

Filho, R. B. (2013). Uma abordagem para ensino baseada na teoria da aprendizagem significativa utilizando a teoria das categorias. Tese (Doutorado) — Universidade Federal de Uberlândia - Departamento de Engenharia Elétrica.

Karampiperis, P., Sampson, D. (2005). Adaptive learning resources sequencing in educational hypermedia systems. Journal of Educational Technology & Society, JSTOR, 8(4), 128–147.

Melo, S. L. et al. (2017). Modelo do estudante baseado em emoções e perfis de personalidade para recomendação de estratégias pedagógicas personalizadas. In Brazilian Symposium on Computers in Education (Simpósio Brasileiro de Informática na Educação-SBIE) 28(1), 967.

Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological review, American Psychological Association, 63(2), 81, 1956.

Narciss, S. et al. (2014). Exploring feedback and student characteristics relevant for personalizing feedback strategies. Computers & Education, Elsevier, 71, 56–76.

Rodrigues, L. M. L., & Carvalho, M. (2005). Sti-i: Sistemas tutoriais inteligentes que integram cognição, emoção e motivação. Revista Brasileira de Informática na Educação, 13(1), 20–34.

Sani, S., aris, T. N. (2014) Computational intelligence approaches for student/tutor modelling: A review. In: IEEE. 2014 5th International Conference on Intelligent Systems, Modelling and Simulation. 72–76.

Truong, H. M. (2016). Integrating learning styles and adaptive e-learning system: Current developments, problems and opportunities. Computers in human behavior, Elsevier, 55, 1185–1193.

Venugopalan, S., Srinath, M., Rodrigues, P. (2016). Recommender system for e-learning through content and profile based approach. In: Proceedings of the Second International Conference on Information and Communication Technology for Competitive Strategies. 1–5.

Woolf, B. (2010). Building intelligent interactive tutors: Student-centered strategies for revolutionizing e-learning. Morgan Kaufmann.



How to Cite

MELO, S. L. de .; SOUSA, R. M. dos S.; LIMA, L. V. Architecture of an intelligent tutor system for personalized recommendation of learning objects considering the theory of structured knowledge maps. Research, Society and Development, [S. l.], v. 10, n. 16, p. e518101623831, 2021. DOI: 10.33448/rsd-v10i16.23831. Disponível em: Acesso em: 6 dec. 2023.



Education Sciences